3D Human Pose Analysis via Diffusion Synthesis
- URL: http://arxiv.org/abs/2401.08930v1
- Date: Wed, 17 Jan 2024 02:59:34 GMT
- Title: 3D Human Pose Analysis via Diffusion Synthesis
- Authors: Haorui Ji, Hongdong Li
- Abstract summary: PADS represents the first diffusion-based framework for tackling general 3D human pose analysis within the inverse problem framework.
Its performance has been validated on different benchmarks, signaling the adaptability and robustness of this pipeline.
- Score: 65.268245109828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated remarkable success in generative modeling.
In this paper, we propose PADS (Pose Analysis by Diffusion Synthesis), a novel
framework designed to address various challenges in 3D human pose analysis
through a unified pipeline. Central to PADS are two distinctive strategies: i)
learning a task-agnostic pose prior using a diffusion synthesis process to
effectively capture the kinematic constraints in human pose data, and ii)
unifying multiple pose analysis tasks like estimation, completion, denoising,
etc, as instances of inverse problems. The learned pose prior will be treated
as a regularization imposing on task-specific constraints, guiding the
optimization process through a series of conditional denoising steps. PADS
represents the first diffusion-based framework for tackling general 3D human
pose analysis within the inverse problem framework. Its performance has been
validated on different benchmarks, signaling the adaptability and robustness of
this pipeline.
Related papers
- CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems [3.3969056208620128]
We propose to push the boundary of inference steps to 1-2 NFEs while still maintaining high reconstruction quality.
Our method achieves new state-of-the-art in diffusion-based inverse problem solving.
arXiv Detail & Related papers (2024-07-17T15:57:50Z) - SkelFormer: Markerless 3D Pose and Shape Estimation using Skeletal Transformers [57.46911575980854]
We introduce SkelFormer, a novel markerless motion capture pipeline for multi-view human pose and shape estimation.
Our method first uses off-the-shelf 2D keypoint estimators, pre-trained on large-scale in-the-wild data, to obtain 3D joint positions.
Next, we design a regression-based inverse-kinematic skeletal transformer that maps the joint positions to pose and shape representations from heavily noisy observations.
arXiv Detail & Related papers (2024-04-19T04:51:18Z) - A generic diffusion-based approach for 3D human pose prediction in the
wild [68.00961210467479]
3D human pose forecasting, i.e., predicting a sequence of future human 3D poses given a sequence of past observed ones, is a challenging-temporal task.
We provide a unified formulation in which incomplete elements (no matter in the prediction or observation) are treated as noise and propose a conditional diffusion model that denoises them and forecasts plausible poses.
We investigate our findings on four standard datasets and obtain significant improvements over the state-of-the-art.
arXiv Detail & Related papers (2022-10-11T17:59:54Z) - Non-Local Latent Relation Distillation for Self-Adaptive 3D Human Pose
Estimation [63.199549837604444]
3D human pose estimation approaches leverage different forms of strong (2D/3D pose) or weak (multi-view or depth) paired supervision.
We cast 3D pose learning as a self-supervised adaptation problem that aims to transfer the task knowledge from a labeled source domain to a completely unpaired target.
We evaluate different self-adaptation settings and demonstrate state-of-the-art 3D human pose estimation performance on standard benchmarks.
arXiv Detail & Related papers (2022-04-05T03:52:57Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation [29.430404703883084]
We present a novel Distribution-Aware Single-stage (DAS) model for tackling the challenging multi-person 3D pose estimation problem.
The proposed DAS model simultaneously localizes person positions and their corresponding body joints in the 3D camera space in a one-pass manner.
Comprehensive experiments on benchmarks CMU Panoptic and MuPoTS-3D demonstrate the superior efficiency of the proposed DAS model.
arXiv Detail & Related papers (2022-03-15T07:30:27Z) - Higher-Order Implicit Fairing Networks for 3D Human Pose Estimation [1.1501261942096426]
We introduce a higher-order graph convolutional framework with initial residual connections for 2D-to-3D pose estimation.
Our model is able to capture the long-range dependencies between body joints.
Experiments and ablations studies conducted on two standard benchmarks demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-11-01T13:48:55Z) - Consistency Guided Scene Flow Estimation [159.24395181068218]
CGSF is a self-supervised framework for the joint reconstruction of 3D scene structure and motion from stereo video.
We show that the proposed model can reliably predict disparity and scene flow in challenging imagery.
It achieves better generalization than the state-of-the-art, and adapts quickly and robustly to unseen domains.
arXiv Detail & Related papers (2020-06-19T17:28:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.