CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems
- URL: http://arxiv.org/abs/2407.12676v1
- Date: Wed, 17 Jul 2024 15:57:50 GMT
- Title: CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems
- Authors: Jiankun Zhao, Bowen Song, Liyue Shen,
- Abstract summary: We propose to push the boundary of inference steps to 1-2 NFEs while still maintaining high reconstruction quality.
Our method achieves new state-of-the-art in diffusion-based inverse problem solving.
- Score: 3.3969056208620128
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion models have been demonstrated as strong priors for solving general inverse problems. Most existing Diffusion model-based Inverse Problem Solvers (DIS) employ a plug-and-play approach to guide the sampling trajectory with either projections or gradients. Though effective, these methods generally necessitate hundreds of sampling steps, posing a dilemma between inference time and reconstruction quality. In this work, we try to push the boundary of inference steps to 1-2 NFEs while still maintaining high reconstruction quality. To achieve this, we propose to leverage a pretrained distillation of diffusion model, namely consistency model, as the data prior. The key to achieving few-step guidance is to enforce two types of constraints during the sampling process of the consistency model: soft measurement constraint with ControlNet and hard measurement constraint via optimization. Supporting both single-step reconstruction and multistep refinement, the proposed framework further provides a way to trade image quality with additional computational cost. Within comparable NFEs, our method achieves new state-of-the-art in diffusion-based inverse problem solving, showcasing the significant potential of employing prior-based inverse problem solvers for real-world applications. Code is available at: https://github.com/BioMed-AI-Lab-U-Michgan/cosign.
Related papers
- Diffusion State-Guided Projected Gradient for Inverse Problems [82.24625224110099]
We propose Diffusion State-Guided Projected Gradient (DiffStateGrad) for inverse problems.
DiffStateGrad projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process.
We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise.
arXiv Detail & Related papers (2024-10-04T14:26:54Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
We propose a novel approach to solve inverse problems with a diffusion prior from an amortized variational inference perspective.
Our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements.
arXiv Detail & Related papers (2024-07-23T02:14:18Z) - Fast Samplers for Inverse Problems in Iterative Refinement Models [19.099632445326826]
We propose a plug-and-play framework for constructing efficient samplers for inverse problems.
Our method can generate high-quality samples in as few as 5 conditional sampling steps and outperforms competing baselines requiring 20-1000 steps.
arXiv Detail & Related papers (2024-05-27T21:50:16Z) - Deep Data Consistency: a Fast and Robust Diffusion Model-based Solver for Inverse Problems [0.0]
We propose Deep Data Consistency (DDC) to update the data consistency step with a deep learning model when solving inverse problems with diffusion models.
In comparison with state-of-the-art methods in linear and non-linear tasks, DDC demonstrates its outstanding performance of both similarity and realness metrics.
arXiv Detail & Related papers (2024-05-17T12:54:43Z) - BlindDiff: Empowering Degradation Modelling in Diffusion Models for Blind Image Super-Resolution [52.47005445345593]
BlindDiff is a DM-based blind SR method to tackle the blind degradation settings in SISR.
BlindDiff seamlessly integrates the MAP-based optimization into DMs.
Experiments on both synthetic and real-world datasets show that BlindDiff achieves the state-of-the-art performance.
arXiv Detail & Related papers (2024-03-15T11:21:34Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - PGDiff: Guiding Diffusion Models for Versatile Face Restoration via
Partial Guidance [65.5618804029422]
Previous works have achieved noteworthy success by limiting the solution space using explicit degradation models.
We propose PGDiff by introducing partial guidance, a fresh perspective that is more adaptable to real-world degradations.
Our method not only outperforms existing diffusion-prior-based approaches but also competes favorably with task-specific models.
arXiv Detail & Related papers (2023-09-19T17:51:33Z) - Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency [7.671153315762146]
Training diffusion models in the pixel space are both data-intensive and computationally demanding.
Latent diffusion models, which operate in a much lower-dimensional space, offer a solution to these challenges.
We propose textitReSample, an algorithm that can solve general inverse problems with pre-trained latent diffusion models.
arXiv Detail & Related papers (2023-07-16T18:42:01Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.