論文の概要: Learning from Imperfect Demonstrations with Self-Supervision for Robotic Manipulation
- arxiv url: http://arxiv.org/abs/2401.08957v3
- Date: Mon, 17 Mar 2025 06:17:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 23:13:52.081958
- Title: Learning from Imperfect Demonstrations with Self-Supervision for Robotic Manipulation
- Title(参考訳): ロボットマニピュレーションのための自己スーパービジョンによる不完全なデモからの学習
- Authors: Kun Wu, Ning Liu, Zhen Zhao, Di Qiu, Jinming Li, Zhengping Che, Zhiyuan Xu, Jian Tang,
- Abstract要約: 現在の模倣学習(IL)は通常不完全なデータを破棄し、成功した専門家データにのみ焦点をあてる。
本稿では、専門家と不完全なデータを組み合わせた自己監督データフィルタリングフレームワーク(SSDF)を導入し、故障したトラジェクトリセグメントの品質スコアを計算する。
SSDFは、高品質な不完全なデータでトレーニングデータセットを正確に拡張し、すべてのロボット操作タスクの成功率を改善する。
- 参考スコア(独自算出の注目度): 30.791222277450053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improving data utilization, especially for imperfect data from task failures, is crucial for robotic manipulation due to the challenging, time-consuming, and expensive data collection process in the real world. Current imitation learning (IL) typically discards imperfect data, focusing solely on successful expert data. While reinforcement learning (RL) can learn from explorations and failures, the sim2real gap and its reliance on dense reward and online exploration make it difficult to apply effectively in real-world scenarios. In this work, we aim to conquer the challenge of leveraging imperfect data without the need for reward information to improve the model performance for robotic manipulation in an offline manner. Specifically, we introduce a Self-Supervised Data Filtering framework (SSDF) that combines expert and imperfect data to compute quality scores for failed trajectory segments. High-quality segments from the failed data are used to expand the training dataset. Then, the enhanced dataset can be used with any downstream policy learning method for robotic manipulation tasks. Extensive experiments on the ManiSkill2 benchmark built on the high-fidelity Sapien simulator and real-world robotic manipulation tasks using the Franka robot arm demonstrated that the SSDF can accurately expand the training dataset with high-quality imperfect data and improve the success rates for all robotic manipulation tasks.
- Abstract(参考訳): データ利用の改善、特にタスク障害からの不完全なデータに対する改善は、現実の困難な、時間を要する、高価なデータ収集プロセスのために、ロボット操作にとって不可欠である。
現在の模倣学習(IL)は通常不完全なデータを破棄し、成功した専門家データにのみ焦点をあてる。
強化学習(RL)は、探索や失敗から学ぶことができるが、シム2リアルギャップとその高密度報酬とオンライン探索への依存は、現実世界のシナリオに効果的に適用することが困難である。
本研究では,ロボット操作のモデル性能をオフラインで向上させるため,報酬情報を必要とせずに不完全なデータを活用するという課題を克服することを目的とする。
具体的には、専門家と不完全なデータを組み合わせた自己監督データフィルタリングフレームワーク(SSDF)を導入し、トラジェクトリセグメントの故障に対する品質スコアを計算する。
失敗したデータから高品質なセグメントを使用して、トレーニングデータセットを拡張する。
次に、強化されたデータセットは、ロボット操作タスクの下流ポリシー学習メソッドで使用することができる。
高忠実度サピエンシミュレータと実世界のロボット操作タスクに基づいて構築されたManiSkill2ベンチマークの大規模な実験は、SSDFが高品質な不完全なデータでトレーニングデータセットを正確に拡張し、すべてのロボット操作タスクの成功率を向上させることを実証した。
関連論文リスト
- Generalist World Model Pre-Training for Efficient Reinforcement Learning [33.813682254087055]
一般化的世界モデル事前学習 (WPT) により, 効率的な強化学習 (RL) と高速タスク適応が可能となることを示す。
6つの異なる実施形態にまたがる72のビジュモータタスクの実験では、WPTは広く使われている学習ベースラインに比べて35.65%と35%高い集計スコアを達成している。
論文 参考訳(メタデータ) (2025-02-26T20:34:29Z) - Simulation as Reality? The Effectiveness of LLM-Generated Data in Open-ended Question Assessment [7.695222586877482]
本研究では,AIに基づくアセスメントツールの限界に対処するため,シミュレーションデータの可能性とギャップについて検討する。
シミュレーションデータから, 自動評価モデルのトレーニングにおいて有望な結果が得られたが, 有効性には顕著な限界があることが判明した。
過度に処理された実世界のデータにも存在する実世界のノイズとバイアスが存在しないことが、この制限に寄与する。
論文 参考訳(メタデータ) (2025-02-10T11:40:11Z) - So You Think You Can Scale Up Autonomous Robot Data Collection? [22.7035324720716]
強化学習(RL)には、自律的なデータ収集を可能にするという約束がある。
環境設計と計測に要する多大な労力のために、現実世界でのスケーリングは依然として困難である。
イミテーション・ラーニング (IL) の手法は環境設計の努力をほとんど必要とせず、人的監督を必要とする。
論文 参考訳(メタデータ) (2024-11-04T05:31:35Z) - VITAL: Visual Teleoperation to Enhance Robot Learning through Human-in-the-Loop Corrections [10.49712834719005]
本稿では,VITAL と呼ばれる双方向操作作業のための低コストな視覚遠隔操作システムを提案する。
われわれのアプローチは、安価なハードウェアとビジュアル処理技術を利用してデモを収集する。
実環境と模擬環境の両方を活用することにより,学習方針の一般化性と堅牢性を高める。
論文 参考訳(メタデータ) (2024-07-30T23:29:47Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - Learning Variable Compliance Control From a Few Demonstrations for Bimanual Robot with Haptic Feedback Teleoperation System [5.497832119577795]
厳格なロボットを使った、きめ細やかな、接触に富んだ操作は、ロボット工学において重要な課題である。
外部センサを介して力を制御することでこれらの問題を緩和するために、コンプライアンス制御スキームが導入されている。
Demonstrationsからの学習は直感的な代替手段であり、ロボットは観察された動作を通じて操作を学習できる。
論文 参考訳(メタデータ) (2024-06-21T09:03:37Z) - BeTAIL: Behavior Transformer Adversarial Imitation Learning from Human Racing Gameplay [48.75878234995544]
模倣学習は、手作りの報酬関数を必要とせずに、デモンストレーションからポリシーを学ぶ。
本稿では,BeTAIL: Behavior Transformer Adversarial Imitation Learningを提案する。
我々は,Gran Turismo Sportにおけるリアルヒューマンゲームプレイのエキスパートレベルのデモンストレーションで,BeTAILを3つの課題でテストした。
論文 参考訳(メタデータ) (2024-02-22T00:38:43Z) - Guided Data Augmentation for Offline Reinforcement Learning and Imitation Learning [3.586527534935176]
オフライン強化学習(RL)では、RLエージェントは、以前に収集したデータの固定データセットのみを使用してタスクを解決することを学習する。
本稿では,専門家の質の高い拡張データを生成するためのガイド付きデータ拡張(GuDA)を提案する。
GuDAは、潜在的に最適でない経験の小さな初期データセットを与えられた学習を可能にする。
論文 参考訳(メタデータ) (2023-10-27T16:34:00Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
我々は、小さなクリーンな実演セットと大きなノイズセットの両方で、準最適実演の模倣を考える。
本稿では,様々な品質のアクションプリミティブを異なるスキルに符号化し,サブデモレーションレベルの評価と模倣を行う手法を提案する。
論文 参考訳(メタデータ) (2023-06-13T17:24:37Z) - STAR: Boosting Low-Resource Information Extraction by Structure-to-Text
Data Generation with Large Language Models [56.27786433792638]
STARは大規模言語モデル(LLM)を利用してデータインスタンスを合成するデータ生成手法である。
我々は、初期データインスタンスを取得するための詳細なステップバイステップ命令を設計する。
実験の結果,STARが生成したデータは,低リソースイベント抽出および関係抽出タスクの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-05-24T12:15:19Z) - A Survey of Demonstration Learning [0.0]
実証学習(Demonstration Learning)は、エージェントがデモンストレーションで示された専門家の行動を模倣してタスクを実行することを学習するパラダイムである。
デモから複雑な振る舞いを学ぶ大きな可能性を秘めているため、大きな注目を集めている。
環境と対話することなく学習することで、デモ学習はロボット工学や医療といった幅広い現実世界の応用を自動化できる。
論文 参考訳(メタデータ) (2023-03-20T15:22:10Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
強化学習(RL)アルゴリズムは、ロボットシステムの自律的なスキル獲得を可能にするという約束を持っている。
現実のロボットRLは、通常、環境をリセットするためにデータ収集と頻繁な人間の介入を必要とする。
本研究では,従来のタスクから収集した多様なオフラインデータセットを効果的に活用することで,これらの課題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2022-07-11T08:31:22Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
産業用IoT(Industrial Internet of Things)の継続的な拡大により、IIoT機器は毎回大量のユーザデータを生成する。
IIoTの分野で、これらの時系列データを効率的かつ安全な方法で管理する方法は、依然として未解決の問題である。
本稿では,無線ネットワーク環境におけるIIoT機器データ管理におけるFL技術の適用について検討する。
論文 参考訳(メタデータ) (2022-02-03T07:12:36Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
我々は,実世界の長距離ロボット操作作業に,スキル発見による取り組みを行う。
未解決のデモンストレーションから再利用可能なスキルのライブラリを学ぶためのボトムアップアプローチを提案する。
提案手法は,多段階操作タスクにおける最先端の模倣学習手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-28T16:18:54Z) - Efficient Realistic Data Generation Framework leveraging Deep
Learning-based Human Digitization [0.0]
提案手法は、実際の背景画像として入力され、さまざまなポーズで人物を投入する。
対応するタスクのベンチマークと評価は、実データに対する補足として、合成データが効果的に使用できることを示している。
論文 参考訳(メタデータ) (2021-06-28T08:07:31Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
単一のロボットアームがピクセルからスパースリワード操作ポリシーを学習できることを示します。
デモは10回しかなく、単一のロボットアームがピクセルからスパースリワード操作のポリシーを学習できることを示しています。
論文 参考訳(メタデータ) (2020-12-14T22:18:39Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
提案手法は,従来の実演データとオンライン体験を組み合わせることで,スキルの素早い学習を可能にする。
以上の結果から,事前データを組み込むことで,ロボット工学を実践的な時間スケールまで学習するのに要する時間を短縮できることが示唆された。
論文 参考訳(メタデータ) (2020-06-16T17:54:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。