Cross-Domain AI for Early Attack Detection and Defense Against Malicious Flows in O-RAN
- URL: http://arxiv.org/abs/2401.09204v1
- Date: Wed, 17 Jan 2024 13:29:47 GMT
- Title: Cross-Domain AI for Early Attack Detection and Defense Against Malicious Flows in O-RAN
- Authors: Bruno Missi Xavier, Merim Dzaferagic, Irene VilĂ , Magnos Martinello, Marco Ruffini,
- Abstract summary: Cross-Domain Artificial Intelligence (AI) can be the key to address this, although its application in Open Radio Access Network (O-RAN) is still at its infancy.
Our results demonstrate the potential of the proposed approach, achieving an accuracy rate of 93%.
This approach not only bridges critical gaps in mobile network security but also showcases the potential of cross-domain AI in enhancing the efficacy of network security measures.
- Score: 5.196266559887213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Only the chairs can edit In the fight against cyber attacks, Network Softwarization (NS) is a flexible and adaptable shield, using advanced software to spot malicious activity in regular network traffic. However, the availability of comprehensive datasets for mobile networks, which are fundamental for the development of Machine Learning (ML) solutions for attack detection near their source, is still limited. Cross-Domain Artificial Intelligence (AI) can be the key to address this, although its application in Open Radio Access Network (O-RAN) is still at its infancy. To address these challenges, we deployed an end-to-end O-RAN network, that was used to collect data from the RAN and the transport network. These datasets allow us to combine the knowledge from an in-network ML traffic classifier for attack detection to bolster the training of an ML-based traffic classifier specifically tailored for the RAN. Our results demonstrate the potential of the proposed approach, achieving an accuracy rate of 93%. This approach not only bridges critical gaps in mobile network security but also showcases the potential of cross-domain AI in enhancing the efficacy of network security measures.
Related papers
- Edge-Only Universal Adversarial Attacks in Distributed Learning [49.546479320670464]
In this work, we explore the feasibility of generating universal adversarial attacks when an attacker has access to the edge part of the model only.
Our approach shows that adversaries can induce effective mispredictions in the unknown cloud part by leveraging key features on the edge side.
Our results on ImageNet demonstrate strong attack transferability to the unknown cloud part.
arXiv Detail & Related papers (2024-11-15T11:06:24Z) - Navigating Connected Car Cybersecurity: Location Anomaly Detection with RAN Data [2.147995542780459]
Cyber-attacks, including hijacking and spoofing, pose significant threats to connected cars.
This paper presents a novel approach for identifying potential attacks through Radio Access Network (RAN) event monitoring.
The major contribution of this paper is a location anomaly detection module that identifies devices that appear in multiple locations simultaneously.
arXiv Detail & Related papers (2024-07-02T22:42:45Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Using machine learning (ML) and deep learning (DL) models in Intrusion Detection Systems has led to a trust deficit due to their non-transparent decision-making.
This paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data.
Our approach achieves high accuracy with 99.47% in threat detection and provides clear, actionable explanations of its analytical outcomes.
arXiv Detail & Related papers (2024-02-01T18:29:16Z) - Machine Learning-Based Malicious Vehicle Detection for Security Threats
and Attacks in Vehicle Ad-hoc Network (VANET) Communications [0.48951183832371004]
Blackhole attacks are significant threats to Vehicle Ad-hoc Network (VANET)
In this paper, we propose a machine learning-based approach for blackhole detection in VANET.
arXiv Detail & Related papers (2024-01-16T06:01:02Z) - Adversarial Machine Learning Threat Analysis in Open Radio Access
Networks [37.23982660941893]
The Open Radio Access Network (O-RAN) is a new, open, adaptive, and intelligent RAN architecture.
In this paper, we present a systematic adversarial machine learning threat analysis for the O-RAN.
arXiv Detail & Related papers (2022-01-16T17:01:38Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - Machine Learning based Anomaly Detection for 5G Networks [0.0]
This paper proposes SDS (Software Defined Security) as a means to provide an automated, flexible and scalable network defence system.
SDS will harness current advances in machine learning to design a CNN (Convolutional Neural Network) using NAS (Neural Architecture Search) to detect anomalous network traffic.
arXiv Detail & Related papers (2020-03-07T00:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.