論文の概要: SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene
Understanding
- arxiv url: http://arxiv.org/abs/2401.09340v1
- Date: Wed, 17 Jan 2024 17:04:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 15:13:23.461158
- Title: SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene
Understanding
- Title(参考訳): SceneVerse: 現場理解のための3次元視覚言語学習
- Authors: Baoxiong Jia, Yixin Chen, Huangyue Yu, Yan Wang, Xuesong Niu, Tengyu
Liu, Qing Li, Siyuan Huang
- Abstract要約: 3D視覚言語グラウンドリングは、言語と3D物理環境の整合性に焦点を当て、エンボディエージェントの開発の基盤となっている。
約68Kの屋内シーンを含む最初の100万スケールの3Dビジョン言語データセットであるSceneVerseを紹介した。
このスケーリングにより、3次元視覚言語学習のための一貫した事前学習フレームワーク、Grounded Pre-training for Scenes (GPS) が実現可能であることを実証する。
- 参考スコア(独自算出の注目度): 39.085879587406694
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: 3D vision-language grounding, which focuses on aligning language with the 3D
physical environment, stands as a cornerstone in the development of embodied
agents. In comparison to recent advancements in the 2D domain, grounding
language in 3D scenes faces several significant challenges: (i) the inherent
complexity of 3D scenes due to the diverse object configurations, their rich
attributes, and intricate relationships; (ii) the scarcity of paired 3D
vision-language data to support grounded learning; and (iii) the absence of a
unified learning framework to distill knowledge from grounded 3D data. In this
work, we aim to address these three major challenges in 3D vision-language by
examining the potential of systematically upscaling 3D vision-language learning
in indoor environments. We introduce the first million-scale 3D vision-language
dataset, SceneVerse, encompassing about 68K 3D indoor scenes and comprising
2.5M vision-language pairs derived from both human annotations and our scalable
scene-graph-based generation approach. We demonstrate that this scaling allows
for a unified pre-training framework, Grounded Pre-training for Scenes (GPS),
for 3D vision-language learning. Through extensive experiments, we showcase the
effectiveness of GPS by achieving state-of-the-art performance on all existing
3D visual grounding benchmarks. The vast potential of SceneVerse and GPS is
unveiled through zero-shot transfer experiments in the challenging 3D
vision-language tasks. Project website: https://scene-verse.github.io .
- Abstract(参考訳): 3D視覚言語グラウンドリングは、言語と3D物理環境の整合性に焦点を当て、エンボディエージェントの開発の基盤となっている。
2dドメインの最近の進歩と比較すると、3dシーンの接地言語にはいくつかの大きな課題がある。
(i)多彩な物体構成、その豊かな属性、複雑な関係による3Dシーンの本質的な複雑さ。
(ii)地中学習を支援する3次元視覚言語データの不足
(iii)接地3dデータから知識を蒸留する統一学習フレームワークが存在しないこと。
本研究では,屋内環境における3次元視覚言語学習の体系的アップスケールの可能性を検討することで,これら3つの課題に対処することを目的とする。
約68Kの屋内シーンを包含し、人間のアノテーションとスケーラブルなシーングラフベースの生成アプローチの両方から2.5Mの視覚言語ペアから構成される。
このスケーリングにより、3次元視覚言語学習のための一貫した事前学習フレームワークであるGrounded Pre-training for Scenes(GPS)が実現可能であることを実証する。
広範にわたる実験を通じて,既存の3次元視覚的グラウンドのベンチマークに対して,最先端の性能を達成し,GPSの有効性を示す。
SceneVerseとGPSの膨大なポテンシャルは、難易度の高い3D視覚言語タスクにおけるゼロショット転送実験を通じて明らかにされている。
プロジェクトウェブサイト: https://scene-verse.github.io
関連論文リスト
- Grounded 3D-LLM with Referent Tokens [58.890058568493096]
そこで我々は,Grounded 3D-LLMを提案する。
このモデルは、3Dシーンを参照するために特別な名詞句としてシーン参照トークンを使用する。
3D視覚タスクをタスク固有の命令テンプレートを使用して言語形式に変換する自然なアプローチを提供する。
論文 参考訳(メタデータ) (2024-05-16T18:03:41Z) - 3DMIT: 3D Multi-modal Instruction Tuning for Scene Understanding [12.823274886850697]
我々は3DMITという新しい高速なプロンプトチューニングパラダイムを導入する。
このパラダイムは、3Dシーンと言語間のアライメントステージを排除し、命令プロンプトを3Dモダリティ情報で拡張する。
本研究では,3次元シーン領域における多様なタスクにまたがる手法の有効性を評価する。
論文 参考訳(メタデータ) (2024-01-06T12:20:18Z) - Weakly-Supervised 3D Visual Grounding based on Visual Linguistic Alignment [26.858034573776198]
視覚言語アライメントに基づく3次元視覚接地のための弱教師付きアプローチを提案する。
我々の3D-VLAは、テキストと2D画像のセマンティクスの整合性において、現在の大規模視覚言語モデルの優れた能力を利用する。
推論段階では、学習したテキスト3D対応は、2D画像がなくてもテキストクエリを3D対象オブジェクトにグラウンド化するのに役立ちます。
論文 参考訳(メタデータ) (2023-12-15T09:08:14Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
一般的な言語知識と視覚概念を2次元画像から3次元シーン理解に適用するためのトレーニングモデルは、研究者が最近探求を始めたばかりの有望な方向である。
そこで本研究では,モデルによる3次元シーンポイントクラウド表現の学習を可能にする,新しい3次元事前学習手法であるMulti-CLIPを提案する。
論文 参考訳(メタデータ) (2023-06-04T11:08:53Z) - WildRefer: 3D Object Localization in Large-scale Dynamic Scenes with Multi-modal Visual Data and Natural Language [31.691159120136064]
本稿では,自然言語記述とオンラインキャプチャによるマルチモーダル視覚データに基づく大規模動的シーンにおける3次元視覚接地作業について紹介する。
本研究では,画像中のリッチな外観情報,位置,および点雲中の幾何学的手がかりをフル活用して,WildReferという新しい手法を提案する。
われわれのデータセットは、野生の3Dビジュアルグラウンドの研究にとって重要なものであり、自動運転とサービスロボットの開発を促進する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-04-12T06:48:26Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
現実シナリオにおける3Dポイントクラウド表現の伝達を学習するために,Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$)を提案する。
具体的には、2Dおよび3Dシナリオで自然に存在する対応を利用して、それらの複雑なシナリオから、適切に整列されたインスタンスベースのテキストイメージポイントプロキシを構築します。
論文 参考訳(メタデータ) (2023-03-22T09:32:45Z) - PLA: Language-Driven Open-Vocabulary 3D Scene Understanding [57.47315482494805]
オープン語彙シーン理解は、アノテートされたラベル空間を超えて見えないカテゴリをローカライズし、認識することを目的としている。
最近の2次元オープン語彙認識のブレークスルーは、リッチな語彙概念を持つインターネットスケールのペア画像テキストデータによって駆動される。
本稿では,3次元からの多視点画像のキャプションにより,事前学習された視覚言語(VL)基盤モデルに符号化された知識を抽出することを提案する。
論文 参考訳(メタデータ) (2022-11-29T15:52:22Z) - Language-Assisted 3D Feature Learning for Semantic Scene Understanding [26.414294993374543]
言語支援型3D特徴学習は、現代のオブジェクト検出とインスタンスセグメンテーションの手法と組み合わせることができる。
3次元言語タスクと3次元言語タスクのベンチマーク実験により,言語支援型3次元特徴学習の有効性が示された。
論文 参考訳(メタデータ) (2022-11-25T13:21:59Z) - Multi-View Transformer for 3D Visual Grounding [64.30493173825234]
3次元視覚グラウンドリングのためのマルチビュー変換器(MVT)を提案する。
我々は3Dシーンを多視点空間に投影し、異なるビュー下の3Dシーンの位置情報を同時にモデル化して集約する。
論文 参考訳(メタデータ) (2022-04-05T12:59:43Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
3次元視覚的グラウンドリング問題に対する空間言語モデルを構築した。
本稿では,ReferIt3Dが提案する視覚言語データセットに対して,本モデルが競合的に動作することを示す。
論文 参考訳(メタデータ) (2021-07-07T18:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。