論文の概要: Grounded 3D-LLM with Referent Tokens
- arxiv url: http://arxiv.org/abs/2405.10370v2
- Date: Mon, 18 Nov 2024 08:29:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:29:19.690263
- Title: Grounded 3D-LLM with Referent Tokens
- Title(参考訳): 参照トークンを用いた接地型3D-LLM
- Authors: Yilun Chen, Shuai Yang, Haifeng Huang, Tai Wang, Runsen Xu, Ruiyuan Lyu, Dahua Lin, Jiangmiao Pang,
- Abstract要約: そこで我々は,Grounded 3D-LLMを提案する。
このモデルは、3Dシーンを参照するために特別な名詞句としてシーン参照トークンを使用する。
タスクごとの指示追従テンプレートは、3D視覚タスクを言語形式に翻訳する際の自然と多様性を保証するために使用される。
- 参考スコア(独自算出の注目度): 58.890058568493096
- License:
- Abstract: Prior studies on 3D scene understanding have primarily developed specialized models for specific tasks or required task-specific fine-tuning. In this study, we propose Grounded 3D-LLM, which explores the potential of 3D large multi-modal models (3D LMMs) to consolidate various 3D vision tasks within a unified generative framework. The model uses scene referent tokens as special noun phrases to reference 3D scenes, enabling it to handle sequences that interleave 3D and textual data. Per-task instruction-following templates are employed to ensure natural and diversity in translating 3D vision tasks into language formats. To facilitate the use of referent tokens in subsequent language modeling, we provide a large-scale, automatically curated grounded scene-text dataset with over 1 million phrase-to-region correspondences and introduce Contrastive Language-Scene Pre-training (CLASP) to perform phrase-level scene-text alignment using this data. Our comprehensive evaluation covers open-ended tasks like dense captioning and 3D question answering, alongside close-ended tasks such as object detection and language grounding. Experiments across multiple 3D benchmarks reveal the leading performance and the broad applicability of Grounded 3D-LLM. Code and datasets are available at the https://groundedscenellm.github.io/grounded_3d-llm.github.io.
- Abstract(参考訳): 3Dシーン理解に関する先行研究は、主に特定のタスクや必要なタスク固有の微調整のための特殊なモデルを開発した。
本研究では,3次元大規模マルチモーダルモデル(3D LMM)の可能性を探求するグラウンドド3D-LLMを提案する。
このモデルは、3Dシーンを参照するために特別な名詞句としてシーン参照トークンを使用し、3Dデータとテキストデータをインターリーブするシーケンスを処理できる。
タスクごとの指示追従テンプレートは、3D視覚タスクを言語形式に翻訳する際の自然と多様性を保証するために使用される。
その後の言語モデリングにおける参照トークンの使用を容易にするため,100万以上のフレーズ・ツー・リージョン対応を持つ大規模で自動キュレートされたシーンテキストデータセットを提供するとともに,このデータを用いてフレーズレベルのシーンテキストアライメントを行うためのコントラシブ言語・シーン事前学習(CLASP)を導入する。
包括的評価では、密接なキャプションや3次元質問応答などのオープンエンドタスクと、オブジェクト検出や言語接地といったクローズエンドタスクをカバーしている。
複数の3Dベンチマークによる実験は、Grounded 3D-LLMのリードパフォーマンスと幅広い適用性を明らかにしている。
コードとデータセットはhttps://groundedscenellm.github.io/grounded_3d-llm.github.ioで公開されている。
関連論文リスト
- POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images [32.33170182669095]
入力された2次元画像からオープンな3次元セマンティックなボクセル占有マップを推定する手法について述べる。
アーキテクチャは、2D-3Dエンコーダと、占有率予測と3D言語ヘッドで構成されている。
出力は3次元接地言語埋め込みの密度の高いボクセルマップであり、様々なオープン語彙タスクを可能にする。
論文 参考訳(メタデータ) (2024-01-17T18:51:53Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
オブジェクトレベルのシーンと対話するために、オブジェクト識別子とオブジェクト中心表現を導入する。
我々のモデルは、ScanRefer、Multi3DRefer、Scan2Cap、ScanQA、SQA3Dなど、既存のベンチマーク手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2023-12-13T14:27:45Z) - Uni3DL: Unified Model for 3D and Language Understanding [41.74095171149082]
3Dおよび言語理解のための統一モデルであるUni3DLを提案する。
Uni3DLは、ポイントクラウド上で直接動作する。
多様な3D視覚言語理解タスクに対して厳格に評価されている。
論文 参考訳(メタデータ) (2023-12-05T08:30:27Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
オープンワールドのインスタンスレベルのシーン理解は、アノテーション付きデータセットに存在しない未知のオブジェクトカテゴリを特定し、認識することを目的としている。
モデルは新しい3Dオブジェクトをローカライズし、それらのセマンティックなカテゴリを推論する必要があるため、この課題は難しい。
本稿では,3Dシーンのキャプションを生成するために,画像テキストペアからの広範な知識を符号化する,事前学習型視覚言語基盤モデルを提案する。
論文 参考訳(メタデータ) (2023-08-01T07:50:14Z) - 3D-LLM: Injecting the 3D World into Large Language Models [60.43823088804661]
大規模言語モデル (LLM) と視覚言語モデル (VLM) は、常識推論のような複数のタスクで優れていることが証明されている。
本稿では,大規模言語モデルに3Dワールドを注入し,新しい3D-LLMのファミリーを導入することを提案する。
具体的には、3D-LLMは3Dポイントクラウドとその機能を入力として取り込んで、さまざまな3D関連タスクを実行することができる。
論文 参考訳(メタデータ) (2023-07-24T17:59:02Z) - OpenScene: 3D Scene Understanding with Open Vocabularies [73.1411930820683]
従来の3Dシーン理解アプローチは、単一のタスクのためにモデルをトレーニングするためのラベル付き3Dデータセットに依存している。
私たちは,CLIP機能空間にテキストと画像ピクセルを埋め込んだ3次元シーンポイントの高密度な特徴をモデルが予測する代替手法OpenSceneを提案する。
このゼロショットアプローチは、タスク非依存のトレーニングとオープン語彙クエリを可能にする。
論文 参考訳(メタデータ) (2022-11-28T18:58:36Z) - Looking Outside the Box to Ground Language in 3D Scenes [27.126171549887232]
本稿では,3つの主要な革新を伴う3次元シーンにおける接地言語モデルを提案する。
言語ストリーム、ポイントクラウド機能ストリーム、および3Dボックスの提案に反復的に注目する。
3Dオブジェクトアノテーションと言語基底アノテーションからの共同管理。
マイナーな変更を伴う2Dイメージの言語基盤に適用すると、GPU時間の半分に収束しながら、最先端の処理と同等に動作します。
論文 参考訳(メタデータ) (2021-12-16T13:50:23Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
3次元視覚的グラウンドリング問題に対する空間言語モデルを構築した。
本稿では,ReferIt3Dが提案する視覚言語データセットに対して,本モデルが競合的に動作することを示す。
論文 参考訳(メタデータ) (2021-07-07T18:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。