Multispectral Stereo-Image Fusion for 3D Hyperspectral Scene
Reconstruction
- URL: http://arxiv.org/abs/2401.09428v1
- Date: Fri, 15 Dec 2023 13:20:35 GMT
- Title: Multispectral Stereo-Image Fusion for 3D Hyperspectral Scene
Reconstruction
- Authors: Eric L. Wisotzky and Jost Triller and Anna Hilsmann and Peter Eisert
- Abstract summary: We present a novel approach combining two calibrated multispectral real-time capable snapshot cameras, covering different spectral ranges, into a stereo-system.
The combined use of different multispectral snapshot cameras enables both 3D reconstruction and spectral analysis.
- Score: 4.2056926734482065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectral imaging enables the analysis of optical material properties that are
invisible to the human eye. Different spectral capturing setups, e.g., based on
filter-wheel, push-broom, line-scanning, or mosaic cameras, have been
introduced in the last years to support a wide range of applications in
agriculture, medicine, and industrial surveillance. However, these systems
often suffer from different disadvantages, such as lack of real-time
capability, limited spectral coverage or low spatial resolution. To address
these drawbacks, we present a novel approach combining two calibrated
multispectral real-time capable snapshot cameras, covering different spectral
ranges, into a stereo-system. Therefore, a hyperspectral data-cube can be
continuously captured. The combined use of different multispectral snapshot
cameras enables both 3D reconstruction and spectral analysis. Both captured
images are demosaicked avoiding spatial resolution loss. We fuse the spectral
data from one camera into the other to receive a spatially and spectrally high
resolution video stream. Experiments demonstrate the feasibility of this
approach and the system is investigated with regard to its applicability for
surgical assistance monitoring.
Related papers
- Beyond the Visible: Jointly Attending to Spectral and Spatial Dimensions with HSI-Diffusion for the FINCH Spacecraft [2.5057561650768814]
The FINCH mission aims to monitor crop residue cover in agricultural fields.
Hyperspectral imaging captures both spectral and spatial information.
It is prone to various types of noise, including random noise, stripe noise, and dead pixels.
arXiv Detail & Related papers (2024-06-15T19:34:18Z) - Hyperspectral Neural Radiance Fields [11.485829401765521]
We propose a hyperspectral 3D reconstruction using Neural Radiance Fields (NeRFs)
NeRFs have seen widespread success in creating high quality volumetric 3D representations of scenes captured by a variety of camera models.
We show that our hyperspectral NeRF approach enables creating fast, accurate volumetric 3D hyperspectral scenes.
arXiv Detail & Related papers (2024-03-21T21:18:08Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - SSIF: Learning Continuous Image Representation for Spatial-Spectral
Super-Resolution [73.46167948298041]
We propose a neural implicit model that represents an image as a function of both continuous pixel coordinates in the spatial domain and continuous wavelengths in the spectral domain.
We show that SSIF generalizes well to both unseen spatial resolutions and spectral resolutions.
It can generate high-resolution images that improve the performance of downstream tasks by 1.7%-7%.
arXiv Detail & Related papers (2023-09-30T15:23:30Z) - High Spectral Spatial Resolution Synthetic HyperSpectral Dataset form
multi-source fusion [7.249349307341409]
This research paper introduces a synthetic hyperspectral dataset that combines high spectral and spatial resolution imaging.
The proposed dataset addresses this limitation by leveraging three modalities: RGB, push-broom visible hyperspectral camera, and snapshot infrared hyperspectral camera.
arXiv Detail & Related papers (2023-06-25T11:17:12Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
We present S2ADet, an object detector that harnesses the rich spectral and spatial complementary information inherent in hyperspectral images.
S2ADet surpasses existing state-of-the-art methods, achieving robust and reliable results.
arXiv Detail & Related papers (2023-06-14T09:01:50Z) - Longwave infrared multispectral image sensor system using
aluminum-germanium plasmonic filter arrays [0.8081564951955755]
A multispectral camera records image data in various wavelengths across the electromagnetic spectrum to acquire additional information that a conventional camera fails to capture.
We experimentally demonstrate an LWIR multispectral image sensor with three wavelength bands using optical elements made of an aluminum-based plasmonic filter array sandwiched in germanium.
Our work demonstrates a versatile spectral thermography technique for detecting target signatures in the LWIR range and other advanced spectral analyses.
arXiv Detail & Related papers (2023-03-03T01:47:32Z) - S^2-Transformer for Mask-Aware Hyperspectral Image Reconstruction [48.83280067393851]
A representative hyperspectral image acquisition procedure conducts a 3D-to-2D encoding by the coded aperture snapshot spectral imager (CASSI)
Two major challenges stand in the way of a high-fidelity reconstruction: (i) To obtain 2D measurements, CASSI dislocates multiple channels by disperser-titling and squeezes them onto the same spatial region, yielding an entangled data loss.
We propose a spatial-spectral (S2-) transformer architecture with a mask-aware learning strategy to tackle these challenges.
arXiv Detail & Related papers (2022-09-24T19:26:46Z) - Spectral Splitting and Aggregation Network for Hyperspectral Face
Super-Resolution [82.59267937569213]
High-resolution (HR) hyperspectral face image plays an important role in face related computer vision tasks under uncontrolled conditions.
In this paper, we investigate how to adapt the deep learning techniques to hyperspectral face image super-resolution.
We present a spectral splitting and aggregation network (SSANet) for HFSR with limited training samples.
arXiv Detail & Related papers (2021-08-31T02:13:00Z) - Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a
spectral filter array [1.6058099298620423]
Hyperspectral imaging is useful for applications ranging from medical diagnostics to agricultural crop monitoring.
Traditional hyperspectral imagers are prohibitively slow and expensive for widespread adoption.
We propose a compact, compact and inexpensive camera for hyperspectral imaging.
arXiv Detail & Related papers (2020-06-15T17:31:17Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.