High Spectral Spatial Resolution Synthetic HyperSpectral Dataset form
multi-source fusion
- URL: http://arxiv.org/abs/2309.00005v1
- Date: Sun, 25 Jun 2023 11:17:12 GMT
- Title: High Spectral Spatial Resolution Synthetic HyperSpectral Dataset form
multi-source fusion
- Authors: Yajie Sun, Ali Zia and Jun Zhou
- Abstract summary: This research paper introduces a synthetic hyperspectral dataset that combines high spectral and spatial resolution imaging.
The proposed dataset addresses this limitation by leveraging three modalities: RGB, push-broom visible hyperspectral camera, and snapshot infrared hyperspectral camera.
- Score: 7.249349307341409
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This research paper introduces a synthetic hyperspectral dataset that
combines high spectral and spatial resolution imaging to achieve a
comprehensive, accurate, and detailed representation of observed scenes or
objects. Obtaining such desirable qualities is challenging when relying on a
single camera. The proposed dataset addresses this limitation by leveraging
three modalities: RGB, push-broom visible hyperspectral camera, and snapshot
infrared hyperspectral camera, each offering distinct spatial and spectral
resolutions. Different camera systems exhibit varying photometric properties,
resulting in a trade-off between spatial and spectral resolution. RGB cameras
typically offer high spatial resolution but limited spectral resolution, while
hyperspectral cameras possess high spectral resolution at the expense of
spatial resolution. Moreover, hyperspectral cameras themselves employ different
capturing techniques and spectral ranges, further complicating the acquisition
of comprehensive data. By integrating the photometric properties of these
modalities, a single synthetic hyperspectral image can be generated,
facilitating the exploration of broader spectral-spatial relationships for
improved analysis, monitoring, and decision-making across various fields. This
paper emphasizes the importance of multi-modal fusion in producing a
high-quality synthetic hyperspectral dataset with consistent spectral intervals
between bands.
Related papers
- Correlation Hyperspectral Imaging [0.0]
Hyperspectral imaging aims at providing information on both the spatial and the spectral distribution of light, with high resolution.
We address this limitation by exploiting light intensity correlations, which are shown to enable overcoming the typical downsides of traditional hyperspectral imaging techniques.
The enabled combination of high spatial and spectral resolution, high speed, and insensitivity to undesired spectral features shall lead to a paradigm change in hyperspectral imaging devices.
arXiv Detail & Related papers (2024-07-18T19:54:44Z) - Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE) [0.0]
We evaluate the performance of diverse deep learning architectures for hyperspectral image segmentation.
Results show that incorporating spatial information alongside spectral data leads to improved segmentation results.
We contribute to the field by cleaning and publicly releasing the Tecnalia WEEE Hyperspectral dataset.
arXiv Detail & Related papers (2024-07-05T13:45:11Z) - HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model [88.13261547704444]
Hyper SIGMA is a vision transformer-based foundation model for HSI interpretation.
It integrates spatial and spectral features using a specially designed spectral enhancement module.
It shows significant advantages in scalability, robustness, cross-modal transferring capability, and real-world applicability.
arXiv Detail & Related papers (2024-06-17T13:22:58Z) - Multispectral Stereo-Image Fusion for 3D Hyperspectral Scene
Reconstruction [4.2056926734482065]
We present a novel approach combining two calibrated multispectral real-time capable snapshot cameras, covering different spectral ranges, into a stereo-system.
The combined use of different multispectral snapshot cameras enables both 3D reconstruction and spectral analysis.
arXiv Detail & Related papers (2023-12-15T13:20:35Z) - Cross-Scope Spatial-Spectral Information Aggregation for Hyperspectral
Image Super-Resolution [47.12985199570964]
We propose a novel cross-scope spatial-spectral Transformer (CST) to investigate long-range spatial and spectral similarities for single hyperspectral image super-resolution.
Specifically, we devise cross-attention mechanisms in spatial and spectral dimensions to comprehensively model the long-range spatial-spectral characteristics.
Experiments over three hyperspectral datasets demonstrate that the proposed CST is superior to other state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2023-11-29T03:38:56Z) - SSIF: Learning Continuous Image Representation for Spatial-Spectral
Super-Resolution [73.46167948298041]
We propose a neural implicit model that represents an image as a function of both continuous pixel coordinates in the spatial domain and continuous wavelengths in the spectral domain.
We show that SSIF generalizes well to both unseen spatial resolutions and spectral resolutions.
It can generate high-resolution images that improve the performance of downstream tasks by 1.7%-7%.
arXiv Detail & Related papers (2023-09-30T15:23:30Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
We present S2ADet, an object detector that harnesses the rich spectral and spatial complementary information inherent in hyperspectral images.
S2ADet surpasses existing state-of-the-art methods, achieving robust and reliable results.
arXiv Detail & Related papers (2023-06-14T09:01:50Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z) - Hyperspectral and multispectral image fusion under spectrally varying
spatial blurs -- Application to high dimensional infrared astronomical
imaging [11.243400478302767]
We propose a data fusion method which combines the benefits of each image to recover a high-spectral resolution data variant.
We conduct experiments on a realistic synthetic dataset of simulated observation of the upcoming James Webb Space Telescope.
arXiv Detail & Related papers (2019-12-26T13:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.