論文の概要: Aligning Large Language Models with Counterfactual DPO
- arxiv url: http://arxiv.org/abs/2401.09566v1
- Date: Wed, 17 Jan 2024 19:43:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 18:46:48.820934
- Title: Aligning Large Language Models with Counterfactual DPO
- Title(参考訳): 対実DPOを用いた大規模言語モデルのアライメント
- Authors: Bradley Butcher
- Abstract要約: 本稿では,人的介入に頼らずにモデルスタイルを整列させる反事実的プロンプトの利用について検討する。
本研究では,この手法が望ましい行動を効果的に抑制し,望ましくない行動を緩和し,不適切な指示を無視するようモデルに促すことを実証する。
- 参考スコア(独自算出の注目度): 1.8130068086063336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in large language models (LLMs) have demonstrated remarkable
capabilities across a diverse range of applications. These models excel in
generating text completions that are contextually coherent and cover an
extensive array of subjects. However, the vast datasets required for their
training make aligning response styles during the pretraining and instruction
tuning phases challenging. Consequently, an additional alignment phase is
typically employed, wherein the model is further trained with human preference
data to better align its outputs with human expectations. While this process
doesn't introduce new capabilities per se, it does accentuate generation styles
innate to the model. This paper explores the utilization of counterfactual
prompting within the framework of Direct Preference Optimization (DPO) to align
the model's style without relying on human intervention. We demonstrate that
this method effectively instils desirable behaviour, mitigates undesirable
ones, and encourages the model to disregard inappropriate instructions. Our
findings suggest that counterfactual prompting with DPO presents a low-resource
way to fine-tune LLMs to meet the demands for responsible and ethically aligned
AI systems.
- Abstract(参考訳): 大規模言語モデル(LLM)の進歩は、様々なアプリケーションで顕著な機能を示している。
これらのモデルは文脈的に一貫性があり、幅広い主題をカバーするテキスト補完を生成するのに優れている。
しかし、トレーニングに必要な膨大なデータセットは、事前トレーニングと指導のチューニングフェーズにおける応答スタイルの整合を困難にしている。
その結果、通常、追加のアライメントフェーズが採用され、モデルはさらに人間の嗜好データで訓練され、その出力と人間の期待をより良く調整される。
このプロセスは、本質的に新しい機能を導入していないが、モデルに固有の生成スタイルをアクセント化する。
本稿では,人間の介入に頼らずにモデルスタイルを整合させるために,直接選好最適化(DPO)フレームワーク内での対実的プロンプトの利用について検討する。
本手法は,望ましい動作を効果的に排除し,望ましくない動作を緩和し,不適切な指示を無視するようモデルに促すことを実証する。
我々の知見は、DPOによる反実的プロンプトは、責任的かつ倫理的に整合したAIシステムに対する要求を満たすために、LLMを微調整する低リソースな方法を示すことを示唆している。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
事前訓練された大規模言語モデル(LLM)は、一貫性のある記事を生成するのに優れていますが、そのアウトプットは非現実的、有毒、あるいはユーザの期待に沿わないかもしれません。
現在のアプローチは、モデルアライメントを改善するために、人間のフィードバックによる強化学習を使うことに重点を置いている。
トークンレベルの微粒化によるLCMアライメント向上手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T20:21:45Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Direct Preference Optimization With Unobserved Preference Heterogeneity [16.91835461818937]
本稿では,生成モデルと人間の嗜好を一致させる新しい手法を提案する。
そこで我々はDPOに対する期待最大化適応を提案し、アノテータの潜在選好型に基づくモデルの混合を生成する。
我々のアルゴリズムはDPOの単純さを生かし、多様な好みを調節する。
論文 参考訳(メタデータ) (2024-05-23T21:25:20Z) - Weak-to-Strong Extrapolation Expedites Alignment [135.12769233630362]
モデルと人間の嗜好との整合性を高めるために,ExPOと呼ばれる手法を提案する。
ExPOは市販のDPO/RLHFモデルを一貫して改善することを示した。
我々は、アライメントトレーニング中に学んだ報酬信号を増幅するExPOの本質に光を当てた。
論文 参考訳(メタデータ) (2024-04-25T17:39:50Z) - Active Preference Learning for Large Language Models [12.093302163058436]
我々は、好みラベルをよりよく活用するために、DPOのアクティブな学習戦略を開発する。
本稿では,言語モデルの予測エントロピーに基づく,プロンプト/コンプリートペアの実用的な獲得関数を提案する。
提案手法は,ペアの選好データに基づく微調整の学習率と最終性能の両方を改善する方法を示す。
論文 参考訳(メタデータ) (2024-02-12T23:09:00Z) - Aligning Language Models with Offline Learning from Human Feedback [5.539080592071948]
環境と対話することなく言語モデルを調整するために,人間のフィードバックフレームワークからオフラインで学習する手法を提案する。
具体的には、フィルタリングアライメント(FA)、報酬重み付けレグレッション(RWR)、条件付きアライメント(CA)について検討し、言語モデルを人間の好みに合わせる。
論文 参考訳(メタデータ) (2023-08-23T10:41:07Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。