論文の概要: Direct Preference Optimization With Unobserved Preference Heterogeneity
- arxiv url: http://arxiv.org/abs/2405.15065v1
- Date: Thu, 23 May 2024 21:25:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 18:57:45.417716
- Title: Direct Preference Optimization With Unobserved Preference Heterogeneity
- Title(参考訳): 観測不能な選好不均一性を用いた直接選好最適化
- Authors: Keertana Chidambaram, Karthik Vinay Seetharaman, Vasilis Syrgkanis,
- Abstract要約: 本稿では,生成モデルと人間の嗜好を一致させる新しい手法を提案する。
そこで我々はDPOに対する期待最大化適応を提案し、アノテータの潜在選好型に基づくモデルの混合を生成する。
我々のアルゴリズムはDPOの単純さを生かし、多様な好みを調節する。
- 参考スコア(独自算出の注目度): 16.91835461818937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: RLHF has emerged as a pivotal step in aligning language models with human objectives and values. It typically involves learning a reward model from human preference data and then using reinforcement learning to update the generative model accordingly. Conversely, Direct Preference Optimization (DPO) directly optimizes the generative model with preference data, skipping reinforcement learning. However, both RLHF and DPO assume uniform preferences, overlooking the reality of diverse human annotators. This paper presents a new method to align generative models with varied human preferences. We propose an Expectation-Maximization adaptation to DPO, generating a mixture of models based on latent preference types of the annotators. We then introduce a min-max regret ensemble learning model to produce a single generative method to minimize worst-case regret among annotator subgroups with similar latent factors. Our algorithms leverage the simplicity of DPO while accommodating diverse preferences. Experimental results validate the effectiveness of our approach in producing equitable generative policies.
- Abstract(参考訳): RLHFは、言語モデルと人間の目的と価値を整合させる重要なステップとして登場した。
典型的には、人間の好みデータから報酬モデルを学び、強化学習を使用して生成モデルを更新する。
逆に、直接選好最適化(DPO)は、選好データを用いて生成モデルを直接最適化し、強化学習をスキップする。
しかし、RLHF と DPO はいずれも、多様なヒトのアノテーターの現実を見越して、均一な嗜好を前提としている。
本稿では,生成モデルと人間の嗜好を一致させる新しい手法を提案する。
そこで我々はDPOに対する期待最大化適応を提案し、アノテータの潜在選好型に基づくモデルの混合を生成する。
次に、類似の潜伏因子を持つアノテータサブグループの中で最悪の後悔を最小化するために、単一の生成法を生成するために、min-max 後悔のアンサンブル学習モデルを導入する。
我々のアルゴリズムはDPOの単純さを生かし、多様な好みを調節する。
実験結果から, 同値な生成ポリシーを創出する上でのアプローチの有効性が検証された。
関連論文リスト
- ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPOは、言語モデルにおける好みの最適化をパーソナライズする手法である。
ComPRedはRedditからコミュニティレベルの好みを持った質問応答データセットです。
論文 参考訳(メタデータ) (2024-10-21T14:02:40Z) - PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences [6.398937923320069]
我々は、既存の事前学習戦略を補完する人間の嗜好をモデル化するフレームワークであるPALを提案する。
PALは,強いベースラインと比較して,競争報酬モデルの精度が向上することを示す。
論文 参考訳(メタデータ) (2024-06-12T17:54:54Z) - Preference Alignment with Flow Matching [23.042382086241364]
優先フローマッチング(PFM)は、好みに基づく強化学習(PbRL)のための新しいフレームワークである
事前訓練されたモデルの任意のクラスへの好みの統合を合理化する。
提案手法の標準PbRL目標との整合性を支持する理論的知見を提供する。
論文 参考訳(メタデータ) (2024-05-30T08:16:22Z) - Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
選好学習は、好ましくない出力よりも、好ましくない出力により高い確率を割り当てるようにモデルを訓練する、という従来の知恵を考察する。
多くの最先端の選好調整モデルでは、一般的な選好データセットでは60%未満のランキング精度が得られている。
論文 参考訳(メタデータ) (2024-05-29T21:29:44Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
言語モデル (LM) は、好みのアノテーションから派生した報酬関数を最大化する。
DPOは、報酬モデルや強化学習を適用することなく、優先データに直接ポリシーを訓練する一般的なオフラインアライメント手法である。
この現象を解析し, 生成対よりも真の嗜好分布のより良いプロキシを得るため, 蒸留を提案する。
論文 参考訳(メタデータ) (2024-05-29T17:39:48Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Active Preference Learning for Large Language Models [12.093302163058436]
我々は、好みラベルをよりよく活用するために、DPOのアクティブな学習戦略を開発する。
本稿では,言語モデルの予測エントロピーに基づく,プロンプト/コンプリートペアの実用的な獲得関数を提案する。
提案手法は,ペアの選好データに基づく微調整の学習率と最終性能の両方を改善する方法を示す。
論文 参考訳(メタデータ) (2024-02-12T23:09:00Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z) - Diffusion Model Alignment Using Direct Preference Optimization [103.2238655827797]
拡散DPOは,ヒトの比較データを直接最適化することにより,拡散モデルを人間の嗜好に合わせる手法である。
拡散DPOを用いた最先端安定拡散XL(SDXL)-1.0モデルの基礎モデルを微調整する。
また、AIフィードバックを使用し、人間の好みのトレーニングに匹敵するパフォーマンスを持つ亜種も開発しています。
論文 参考訳(メタデータ) (2023-11-21T15:24:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。