Multiplexed quantum repeaters based on single-photon interference with
mild stabilization
- URL: http://arxiv.org/abs/2401.09578v2
- Date: Sat, 3 Feb 2024 00:17:53 GMT
- Title: Multiplexed quantum repeaters based on single-photon interference with
mild stabilization
- Authors: Daisuke Yoshida, Tomoyuki Horikiri
- Abstract summary: We present a quantum repeater scheme that leverages single-photon interference with reduced difficulty of phase stabilization.
Under specific conditions, we demonstrate that our scheme achieves a higher entanglement distribution rate between end nodes compared to existing schemes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum repeaters are pivotal in the physical layer of the quantum internet.
For its development, quantum repeaters capable of efficient entanglement
distribution are necessary. Quantum repeater schemes based on single-photon
interference are promising due to their potential efficiency. However, schemes
involving first-order interference with photon sources at distant nodes require
stringent phase stability in the components, which poses challenges for
long-distance implementation. In this paper, we present a quantum repeater
scheme that leverages single-photon interference with reduced difficulty of
phase stabilization. Additionally, under specific conditions, we demonstrate
that our scheme achieves a higher entanglement distribution rate between end
nodes compared to existing schemes. This approach, implementable using only
feasible technologies including multimode quantum memories and two-photon
sources, offers high entanglement distribution rates and mild phase
stabilization, leading to the development of multimode quantum repeaters.
Related papers
- Heralded optical entanglement distribution via lossy quantum channels: A comparative study [0.4551615447454769]
Quantum entanglement serves as a foundational resource for various quantum technologies.
This study suggests three heralded schemes that distribute multipartite Greenberger-Horne-Zeilinger (GHZ) states via lossy quantum channels.
By comparing success probabilities and heralding efficiency, we find that each scheme has its own advantage according to the number of parties and the channel distance and the security requirement.
arXiv Detail & Related papers (2024-09-25T05:08:21Z) - Extendable optical phase synchronization of remote and independent quantum network nodes over deployed fibers [0.0]
Single-click heralding schemes can be used to increase entanglement rates at the cost of needing an optically phase-synchronized architecture.
We present a phase synchronization scheme for a metropolitan quantum network, operating in the low-loss telecom L-band.
arXiv Detail & Related papers (2024-08-22T15:05:23Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Optical single-shot readout of spin qubits in silicon [41.94295877935867]
silicon nanofabrication offers unique advantages for integration and up-scaling.
Small spin-qubit registers have exceeded error-correction thresholds, their connection to large quantum computers is an outstanding challenge.
We implement such an efficient spin-photon interface based on erbium dopants in a nanophotonic resonator.
arXiv Detail & Related papers (2024-05-08T18:30:21Z) - Scalable Multipartite Entanglement of Remote Rare-earth Ion Qubits [3.9514210525254785]
Single photon emitters with internal spin are leading contenders for developing quantum repeater networks.
We introduce a scalable approach to quantum networking that utilizes frequency erasing photon detection and real-time quantum control.
Our results provide a practical route to overcoming universal limitations imposed by non-uniformity and instability in solid-state emitters.
arXiv Detail & Related papers (2024-02-25T23:55:29Z) - Asynchronous Quantum Repeater using Multiple Quantum Memory [0.6445605125467574]
A full-fledged quantum network relies on the formation of entangled links between remote location with the help of quantum repeaters.
We propose a quantum repeater protocol using the idea of post-matching, which retains the same efficiency as the single-photon interference protocol.
arXiv Detail & Related papers (2024-01-11T08:24:37Z) - On-chip Hong-Ou-Mandel interference from separate quantum dot emitters
in an integrated circuit [0.3096919150448224]
We show a fully monolithic GaAs circuit combing two frequency-matched quantum dot single-photon sources interconnected with a low-loss on-chip beamsplitter connected via single-mode ridge waveguides.
This device enabled us to perform a two-photon interference experiment on-chip with visibility reaching 66%, limited by the coherence of the emitters.
arXiv Detail & Related papers (2023-01-04T17:03:04Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
arXiv Detail & Related papers (2020-12-10T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.