Distributed quantum inner product estimation
- URL: http://arxiv.org/abs/2111.03273v2
- Date: Sun, 10 Apr 2022 22:38:26 GMT
- Title: Distributed quantum inner product estimation
- Authors: Anurag Anshu, Zeph Landau, Yunchao Liu
- Abstract summary: A benchmarking task known as cross-platform verification has been proposed that aims to estimate the fidelity of states prepared on two quantum computers.
No quantum communication can be performed between the two physical platforms due to hardware constraints.
We show that the sample complexity must be at least $Omega(max1/varepsilon2,sqrtd/varepsilon)$, even in the strongest setting.
- Score: 14.222887950206658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As small quantum computers are becoming available on different physical
platforms, a benchmarking task known as cross-platform verification has been
proposed that aims to estimate the fidelity of states prepared on two quantum
computers. This task is fundamentally distributed, as no quantum communication
can be performed between the two physical platforms due to hardware
constraints, which prohibits a joint SWAP test. In this paper we settle the
sample complexity of this task across all measurement and communication
settings. The essence of the task, which we call distributed quantum inner
product estimation, involves two players Alice and Bob who have $k$ copies of
unknown states $\rho,\sigma$ (acting on $\mathbb{C}^{d}$) respectively. Their
goal is to estimate $\mathrm{Tr}(\rho\sigma)$ up to additive error
$\varepsilon\in(0,1)$, using local quantum operations and classical
communication. In the weakest setting where only non-adaptive single-copy
measurements and simultaneous message passing are allowed, we show that
$k=O(\max\{1/\varepsilon^2,\sqrt{d}/\varepsilon\})$ copies suffice. This
achieves a savings compared to full tomography which takes $\Omega(d^3)$ copies
with single-copy measurements. Surprisingly, we also show that the sample
complexity must be at least
$\Omega(\max\{1/\varepsilon^2,\sqrt{d}/\varepsilon\})$, even in the strongest
setting where adaptive multi-copy measurements and arbitrary rounds of
communication are allowed. This shows that the success achieved by shadow
tomography, for sample-efficiently learning the properties of a single system,
cannot be generalized to the distributed setting. Furthermore, the fact that
the sample complexity remains the same with single and multi-copy measurements
contrasts with single system quantum property testing, which often demonstrate
exponential separations in sample complexity with single and multi-copy
measurements.
Related papers
- On the sample complexity of purity and inner product estimation [8.94496959777308]
We study the sample complexity of the tasks quantum purity estimation and quantum inner product estimation.
In purity estimation, we are to estimate $tr(rho2)$ of an unknown quantum state $rho$ to additive error $epsilon$.
For quantum inner product estimation, Alice and Bob are to estimate $tr(rhosigma)$ to additive error $epsilon$ given copies of unknown quantum state $rho$ and $sigma$.
arXiv Detail & Related papers (2024-10-16T16:17:21Z) - An optimal tradeoff between entanglement and copy complexity for state
tomography [24.737530909081915]
We study tomography in the natural setting where one can make measurements of $t$ copies at a time.
This is the first smooth entanglement-copy protocol known for any quantum learning task.
A key insight is to use SchurilonWeyl sampling not to estimate the spectrum of $rho$, but to estimate the deviation of $rho$ from the maximally mixed state.
arXiv Detail & Related papers (2024-02-26T07:18:57Z) - The role of shared randomness in quantum state certification with
unentangled measurements [36.19846254657676]
We study quantum state certification using unentangled quantum measurements.
$Theta(d2/varepsilon2)$ copies are necessary and sufficient for state certification.
We develop a unified lower bound framework for both fixed and randomized measurements.
arXiv Detail & Related papers (2024-01-17T23:44:52Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Validation tests of GBS quantum computers give evidence for quantum
advantage with a decoherent target [62.997667081978825]
We use positive-P phase-space simulations of grouped count probabilities as a fingerprint for verifying multi-mode data.
We show how one can disprove faked data, and apply this to a classical count algorithm.
arXiv Detail & Related papers (2022-11-07T12:00:45Z) - Efficient Verification of Anticoncentrated Quantum States [0.38073142980733]
I present a novel method for estimating the fidelity $F(mu,tau)$ between a preparable quantum state $mu$ and a classically specified target state $tau$.
I also present a more sophisticated version of the method, which uses any efficiently preparable and well-characterized quantum state as an importance sampler.
arXiv Detail & Related papers (2020-12-15T18:01:11Z) - Quantum Communication Complexity of Distribution Testing [114.31181206328276]
Two players each receive $t$ samples from one distribution over $[n]$.
The goal is to decide whether their two distributions are equal, or are $epsilon$-far apart.
We show that the quantum communication complexity of this problem is $tildeO$(tepsilon2))$ qubits when distributions have low $l$-norm.
arXiv Detail & Related papers (2020-06-26T09:05:58Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Entanglement is Necessary for Optimal Quantum Property Testing [15.58122727889318]
We show that with independent measurements, $Omega(d4/3/epsilon2)$ is necessary, even if the measurements are chosen adaptively.
We develop several new techniques, including a chain-rule style proof of Paninski's lower bound for classical uniformity testing.
arXiv Detail & Related papers (2020-04-16T18:28:39Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Communication Cost of Quantum Processes [49.281159740373326]
A common scenario in distributed computing involves a client who asks a server to perform a computation on a remote computer.
An important problem is to determine the minimum amount of communication needed to specify the desired computation.
We analyze the total amount of (classical and quantum) communication needed by a server in order to accurately execute a quantum process chosen by a client.
arXiv Detail & Related papers (2020-02-17T08:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.