Pauli measurements are not optimal for single-copy tomography
- URL: http://arxiv.org/abs/2502.18170v1
- Date: Tue, 25 Feb 2025 13:03:45 GMT
- Title: Pauli measurements are not optimal for single-copy tomography
- Authors: Jayadev Acharya, Abhilash Dharmavarapu, Yuhan Liu, Nengkun Yu,
- Abstract summary: We prove a stronger upper bound of $O(frac10Nepsilon2)$ and a lower bound of $Omega(frac9.118Nepsilon2)$.<n>This demonstrates the first known separation between Pauli measurements and structured POVMs.
- Score: 34.83118849281207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state tomography is a fundamental problem in quantum computing. Given $n$ copies of an unknown $N$-qubit state $\rho \in \mathbb{C}^{d \times d},d=2^N$, the goal is to learn the state up to an accuracy $\epsilon$ in trace distance, with at least probability 0.99. We are interested in the copy complexity, the minimum number of copies of $\rho$ needed to fulfill the task. Pauli measurements have attracted significant attention due to their ease of implementation in limited settings. The best-known upper bound is $O(\frac{N \cdot 12^N}{\epsilon^2})$, and no non-trivial lower bound is known besides the general single-copy lower bound $\Omega(\frac{8^n}{\epsilon^2})$, achieved by hard-to-implement structured POVMs such as MUB, SIC-POVM, and uniform POVM. We have made significant progress on this long-standing problem. We first prove a stronger upper bound of $O(\frac{10^N}{\epsilon^2})$. To complement it with a lower bound of $\Omega(\frac{9.118^N}{\epsilon^2})$, which holds under adaptivity. To our knowledge, this demonstrates the first known separation between Pauli measurements and structured POVMs. The new lower bound is a consequence of a novel framework for adaptive quantum state tomography with measurement constraints. The main advantage over prior methods is that we can use measurement-dependent hard instances to prove tight lower bounds for Pauli measurements. Moreover, we connect the copy-complexity lower bound to the eigenvalues of the measurement information channel, which governs the measurement's capacity to distinguish states. To demonstrate the generality of the new framework, we obtain tight-bounds for adaptive quantum tomography with $k$-outcome measurements, where we recover existing results and establish new ones.
Related papers
- Coherence in Property Testing: Quantum-Classical Collapses and Separations [42.44394412033434]
We show that no tester can distinguish subset states of size $2n/8$ from $2n/4$ with probability better than $2-Theta(n)$.<n>We also show connections to disentangler and quantum-to-quantum transformation lower bounds.
arXiv Detail & Related papers (2024-11-06T19:52:15Z) - Quantum state testing with restricted measurements [30.641152457827527]
We develop an information-theoretic framework that yields unified copy complexity lower bounds for restricted families of non-adaptive measurements.
We demonstrate a separation between these two schemes, showing the power of randomized measurement schemes over fixed ones.
arXiv Detail & Related papers (2024-08-30T17:48:00Z) - An optimal tradeoff between entanglement and copy complexity for state
tomography [24.737530909081915]
We study tomography in the natural setting where one can make measurements of $t$ copies at a time.
This is the first smooth entanglement-copy protocol known for any quantum learning task.
A key insight is to use SchurilonWeyl sampling not to estimate the spectrum of $rho$, but to estimate the deviation of $rho$ from the maximally mixed state.
arXiv Detail & Related papers (2024-02-26T07:18:57Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Lower Bounds for Learning in Revealing POMDPs [88.23337313766355]
This paper studies the fundamental limits of reinforcement learning (RL) in the challenging emphpartially observable setting.
For emphmulti-step revealing POMDPs, we show that the latent state-space dependence is at least $Omega(S1.5)$ in the sample complexity.
arXiv Detail & Related papers (2023-02-02T18:59:30Z) - Horizon-Free and Variance-Dependent Reinforcement Learning for Latent
Markov Decision Processes [62.90204655228324]
We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight.
We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver.
arXiv Detail & Related papers (2022-10-20T21:32:01Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - New Lower Bounds for Private Estimation and a Generalized Fingerprinting
Lemma [10.176795938619417]
We prove new lower bounds for statistical estimation tasks under the constraint of $(varepsilon, delta)$-differential privacy.
We show that estimating the Frobenius norm requires $Omega(d2)$ samples, and in spectral norm requires $Omega(d3/2)$ samples, both matching upper bounds up to logarithmic factors.
arXiv Detail & Related papers (2022-05-17T17:55:10Z) - Tight Bounds for Quantum State Certification with Incoherent
Measurements [18.566266990940374]
When $sigma$ is the maximally mixed state $frac1d I_d$, this is known as mixedness testing.
We focus on algorithms which use incoherent measurements, i.e. which only measure one copy of $rho$ at a time.
arXiv Detail & Related papers (2022-04-14T17:59:31Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - Distributed quantum inner product estimation [14.222887950206658]
A benchmarking task known as cross-platform verification has been proposed that aims to estimate the fidelity of states prepared on two quantum computers.
No quantum communication can be performed between the two physical platforms due to hardware constraints.
We show that the sample complexity must be at least $Omega(max1/varepsilon2,sqrtd/varepsilon)$, even in the strongest setting.
arXiv Detail & Related papers (2021-11-05T05:35:03Z) - The Curse of Passive Data Collection in Batch Reinforcement Learning [82.6026077420886]
In high stake applications, active experimentation may be considered too risky and thus data are often collected passively.
While in simple cases, such as in bandits, passive and active data collection are similarly effective, the price of passive sampling can be much higher when collecting data from a system with controlled states.
arXiv Detail & Related papers (2021-06-18T07:54:23Z) - Improved Sample Complexity for Incremental Autonomous Exploration in
MDPs [132.88757893161699]
We learn the set of $epsilon$-optimal goal-conditioned policies attaining all states that are incrementally reachable within $L$ steps.
DisCo is the first algorithm that can return an $epsilon/c_min$-optimal policy for any cost-sensitive shortest-path problem.
arXiv Detail & Related papers (2020-12-29T14:06:09Z) - Sample efficient tomography via Pauli Measurements [11.98034899127065]
We explore the power of Pauli measurements in the state tomography related problems.
We show that the textitquantum state tomography problem of $n$-qubit system can be accomplished with $mathcalO(frac10nepsilon2)$ copies of the unknown state using Pauli measurements.
arXiv Detail & Related papers (2020-09-10T00:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.