Integrating Graceful Degradation and Recovery through Requirement-driven Adaptation
- URL: http://arxiv.org/abs/2401.09678v2
- Date: Mon, 8 Apr 2024 16:44:50 GMT
- Title: Integrating Graceful Degradation and Recovery through Requirement-driven Adaptation
- Authors: Simon Chu, Justin Koe, David Garlan, Eunsuk Kang,
- Abstract summary: Cyber-physical systems (CPS) are subject to environmental uncertainties such as adverse operating conditions, malicious attacks, and hardware degradation.
CPS rely on two types of operations: (1) graceful degradation, to ensure that the system maintains an acceptable level of safety during unexpected environmental conditions and (2) recovery, to facilitate the resumption of normal system functions.
We propose a self-adaptation approach for improving system resiliency through automated triggering and coordination of graceful degradation and recovery.
- Score: 9.08778846268903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cyber-physical systems (CPS) are subject to environmental uncertainties such as adverse operating conditions, malicious attacks, and hardware degradation. These uncertainties may lead to failures that put the system in a sub-optimal or unsafe state. Systems that are resilient to such uncertainties rely on two types of operations: (1) graceful degradation, to ensure that the system maintains an acceptable level of safety during unexpected environmental conditions and (2) recovery, to facilitate the resumption of normal system functions. Typically, mechanisms for degradation and recovery are developed independently from each other, and later integrated into a system, requiring the designer to develop an additional, ad-hoc logic for activating and coordinating between the two operations. In this paper, we propose a self-adaptation approach for improving system resiliency through automated triggering and coordination of graceful degradation and recovery. The key idea behind our approach is to treat degradation and recovery as requirement-driven adaptation tasks: Degradation can be thought of as temporarily weakening original (i.e., ideal) system requirements to be achieved by the system, and recovery as strengthening the weakened requirements when the environment returns within an expected operating boundary. Furthermore, by treating weakening and strengthening as dual operations, we argue that a single requirement-based adaptation method is sufficient to enable coordination between degradation and recovery. Given system requirements specified in signal temporal logic (STL), we propose a run-time adaptation framework that performs degradation and recovery in response to environmental changes. We describe a prototype implementation of our framework and demonstrate the feasibility of the proposed approach using a case study in unmanned underwater vehicles.
Related papers
- Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
Real-world machine learning systems often encounter model performance degradation due to distributional shifts in the underlying data generating process.
Existing approaches to addressing shifts, such as concept drift adaptation, are limited by their reason-agnostic nature.
We propose self-healing machine learning (SHML) to overcome these limitations.
arXiv Detail & Related papers (2024-10-31T20:05:51Z) - Automatically Adaptive Conformal Risk Control [49.95190019041905]
We propose a methodology for achieving approximate conditional control of statistical risks by adapting to the difficulty of test samples.
Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning.
arXiv Detail & Related papers (2024-06-25T08:29:32Z) - Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings [0.24578723416255752]
We develop scalable formal verification algorithms without shifting the problem to unrealistic assumptions.
In a pursuit of developing scalable formal verification algorithms without shifting the problem to unrealistic assumptions, we employ the concept of barrier certificates.
We show how to solve the resulting program efficiently using sum-of-squares optimization and a Gaussian process envelope.
arXiv Detail & Related papers (2024-03-15T17:32:02Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Investigating Robustness in Cyber-Physical Systems: Specification-Centric Analysis in the face of System Deviations [8.8690305802668]
A critical attribute of cyber-physical systems (CPS) is robustness, denoting its capacity to operate safely.
This paper proposes a novel specification-based robustness, which characterizes the effectiveness of a controller in meeting a specified system requirement.
We present an innovative two-layer simulation-based analysis framework designed to identify subtle robustness violations.
arXiv Detail & Related papers (2023-11-13T16:44:43Z) - Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration [78.14941737723501]
We propose a Cross-consistent Deep Unfolding Network (CDUN) for All-In-One VR.
By orchestrating two cascading procedures, CDUN achieves adaptive processing for diverse degradations.
In addition, we introduce a window-based inter-frame fusion strategy to utilize information from more adjacent frames.
arXiv Detail & Related papers (2023-09-04T14:18:00Z) - CHESS: A Framework for Evaluation of Self-adaptive Systems based on
Chaos Engineering [0.6875312133832078]
There is an increasing need to assess the correct behavior of self-adaptive and self-healing systems.
There is a lack of systematic evaluation methods for self-adaptive and self-healing systems.
We propose CHESS to address this gap by evaluating self-adaptive and self-healing systems through fault injection based on chaos engineering.
arXiv Detail & Related papers (2023-03-13T17:00:55Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Reconfiguring Hybrid Systems Using SAT [5.208405959764275]
Reconfiguration aims at recovering a system from a fault by automatically adapting the system configuration.
This work presents a novel algorithm which solves three main challenges.
It is shown that the approach is able to reconfigure faults on simulated process engineering systems.
arXiv Detail & Related papers (2021-05-18T09:50:47Z) - Implicit Subspace Prior Learning for Dual-Blind Face Restoration [66.67059961379923]
A novel implicit subspace prior learning (ISPL) framework is proposed as a generic solution to dual-blind face restoration.
Experimental results demonstrate significant perception-distortion improvement of ISPL against existing state-of-the-art methods.
arXiv Detail & Related papers (2020-10-12T08:04:24Z) - System-Level Predictive Maintenance: Review of Research Literature and
Gap Analysis [17.559696144075776]
This paper reviews current literature in the field of predictive maintenance from the system point of view.
We differentiate the existing capabilities of condition estimation and failure risk forecasting as currently applied to simple components, from the capabilities needed to solve the same tasks for complex assets.
arXiv Detail & Related papers (2020-05-11T16:30:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.