Adaptive Insurance Reserving with CVaR-Constrained Reinforcement Learning under Macroeconomic Regimes
- URL: http://arxiv.org/abs/2504.09396v1
- Date: Sun, 13 Apr 2025 01:43:25 GMT
- Title: Adaptive Insurance Reserving with CVaR-Constrained Reinforcement Learning under Macroeconomic Regimes
- Authors: Stella C. Dong, James R. Finlay,
- Abstract summary: This paper proposes a reinforcement learning (RL) framework for insurance reserving that integrates tail-risk sensitivity, macroeconomic regime modeling, and regulatory compliance.<n>The framework also accommodates fixed-shock stress testing and regime-stratified analysis, providing a principled and principled approach to reserving under uncertainty.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a reinforcement learning (RL) framework for insurance reserving that integrates tail-risk sensitivity, macroeconomic regime modeling, and regulatory compliance. The reserving problem is formulated as a finite-horizon Markov Decision Process (MDP), in which reserve adjustments are optimized using Proximal Policy Optimization (PPO) subject to Conditional Value-at-Risk (CVaR) constraints. To enhance policy robustness across varying economic conditions, the agent is trained using a regime-aware curriculum that progressively increases volatility exposure. The reward structure penalizes reserve shortfall, capital inefficiency, and solvency floor violations, with design elements informed by Solvency II and Own Risk and Solvency Assessment (ORSA) frameworks. Empirical evaluations on two industry datasets--Workers' Compensation, and Other Liability--demonstrate that the RL-CVaR agent achieves superior performance relative to classical reserving methods across multiple criteria, including tail-risk control (CVaR$_{0.95}$), capital efficiency, and regulatory violation rate. The framework also accommodates fixed-shock stress testing and regime-stratified analysis, providing a principled and extensible approach to reserving under uncertainty.
Related papers
- A Hybrid Framework for Reinsurance Optimization: Integrating Generative Models and Reinforcement Learning [0.0]
Reinsurance optimization is critical for insurers to manage risk exposure, ensure financial stability, and maintain solvency.<n>Traditional approaches often struggle with dynamic claim distributions, high-dimensional constraints, and evolving market conditions.<n>This paper introduces a novel hybrid framework that integrates generative models and reinforcement learning.
arXiv Detail & Related papers (2025-01-11T02:02:32Z) - Beyond CVaR: Leveraging Static Spectral Risk Measures for Enhanced Decision-Making in Distributional Reinforcement Learning [4.8342038441006805]
In domains such as finance, healthcare, and robotics, managing worst-case scenarios is critical.<n> Distributional Reinforcement Learning (DRL) provides a natural framework to incorporate risk sensitivity into decision-making processes.<n>We present a novel DRL algorithm with convergence guarantees that optimize for a broader class of static Spectral Risk Measures (SRM)
arXiv Detail & Related papers (2025-01-03T20:25:41Z) - Robust Risk-Sensitive Reinforcement Learning with Conditional Value-at-Risk [23.63388546004777]
We analyze the robustness of CVaR-based risk-sensitive RL under Robust Markov Decision Processes.
Motivated by the existence of decision-dependent uncertainty in real-world problems, we study problems with state-action-dependent ambiguity sets.
arXiv Detail & Related papers (2024-05-02T20:28:49Z) - A Reductions Approach to Risk-Sensitive Reinforcement Learning with Optimized Certainty Equivalents [44.09686403685058]
We study risk-sensitive RL where the goal is learn a history-dependent policy that optimize some risk measure of cumulative rewards.<n>We propose two meta-algorithms: one grounded in optimism and another based on policy gradients.<n>We empirically show that our algorithms learn the optimal history-dependent policy in a proof-of-concept MDP.
arXiv Detail & Related papers (2024-03-10T21:45:12Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
We present a novel unified bilevel optimization-based framework, textsfPARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning.
Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable.
Our empirical results substantiate that the proposed textsfPARL can address the alignment concerns in RL by showing significant improvements.
arXiv Detail & Related papers (2023-08-03T18:03:44Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - A Risk-Sensitive Approach to Policy Optimization [21.684251937825234]
Standard deep reinforcement learning (DRL) aims to maximize expected reward, considering collected experiences equally in formulating a policy.
We propose a more direct approach whereby risk-sensitive objectives, specified in terms of the cumulative distribution function (CDF) of the distribution of full-episode rewards, are optimized.
We demonstrate that the use of moderately "pessimistic" risk profiles, which emphasize scenarios where the agent performs poorly, leads to enhanced exploration and a continual focus on addressing deficiencies.
arXiv Detail & Related papers (2022-08-19T00:55:05Z) - COptiDICE: Offline Constrained Reinforcement Learning via Stationary
Distribution Correction Estimation [73.17078343706909]
offline constrained reinforcement learning (RL) problem, in which the agent aims to compute a policy that maximizes expected return while satisfying given cost constraints, learning only from a pre-collected dataset.
We present an offline constrained RL algorithm that optimize the policy in the space of the stationary distribution.
Our algorithm, COptiDICE, directly estimates the stationary distribution corrections of the optimal policy with respect to returns, while constraining the cost upper bound, with the goal of yielding a cost-conservative policy for actual constraint satisfaction.
arXiv Detail & Related papers (2022-04-19T15:55:47Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
This paper proposes a general policy mirror descent (GPMD) algorithm for solving regularized RL.
We demonstrate that our algorithm converges linearly over an entire range learning rates, in a dimension-free fashion, to the global solution.
arXiv Detail & Related papers (2021-05-24T02:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.