HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization
- URL: http://arxiv.org/abs/2401.09716v1
- Date: Thu, 18 Jan 2024 04:23:21 GMT
- Title: HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization
- Authors: Guanglin Zhou and Zhongyi Han and Shiming Chen and Biwei Huang and
Liming Zhu and Tongliang Liu and Lina Yao and Kun Zhang
- Abstract summary: Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features.
We introduce a novel method designed to supplement the model with domain-level and task-specific characteristics.
This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization.
- Score: 69.33162366130887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain Generalization (DG) endeavors to create machine learning models that
excel in unseen scenarios by learning invariant features. In DG, the prevalent
practice of constraining models to a fixed structure or uniform
parameterization to encapsulate invariant features can inadvertently blend
specific aspects. Such an approach struggles with nuanced differentiation of
inter-domain variations and may exhibit bias towards certain domains, hindering
the precise learning of domain-invariant features. Recognizing this, we
introduce a novel method designed to supplement the model with domain-level and
task-specific characteristics. This approach aims to guide the model in more
effectively separating invariant features from specific characteristics,
thereby boosting the generalization. Building on the emerging trend of visual
prompts in the DG paradigm, our work introduces the novel \textbf{H}ierarchical
\textbf{C}ontrastive \textbf{V}isual \textbf{P}rompt (HCVP) methodology. This
represents a significant advancement in the field, setting itself apart with a
unique generative approach to prompts, alongside an explicit model structure
and specialized loss functions. Differing from traditional visual prompts that
are often shared across entire datasets, HCVP utilizes a hierarchical prompt
generation network enhanced by prompt contrastive learning. These generative
prompts are instance-dependent, catering to the unique characteristics inherent
to different domains and tasks. Additionally, we devise a prompt modulation
network that serves as a bridge, effectively incorporating the generated visual
prompts into the vision transformer backbone. Experiments conducted on five DG
datasets demonstrate the effectiveness of HCVP, outperforming both established
DG algorithms and adaptation protocols.
Related papers
- Boundless Across Domains: A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation [1.93061220186624]
Domain-invariant representation learning is a powerful method for domain generalization.
Previous approaches face challenges such as high computational demands, training instability, and limited effectiveness with high-dimensional data.
We propose an Adaptive Feature Blending (AFB) method that generates out-of-distribution samples while exploring the in-distribution space.
arXiv Detail & Related papers (2024-11-22T12:06:24Z) - Enhancing Domain Adaptation through Prompt Gradient Alignment [16.618313165111793]
We develop a line of works based on prompt learning to learn both domain-invariant and specific features.
We cast UDA as a multiple-objective optimization problem in which each objective is represented by a domain loss.
Our method consistently surpasses other prompt-based baselines by a large margin on different UDA benchmarks.
arXiv Detail & Related papers (2024-06-13T17:40:15Z) - CFPL-FAS: Class Free Prompt Learning for Generalizable Face Anti-spoofing [66.6712018832575]
Domain generalization (DG) based Face Anti-Spoofing (FAS) aims to improve the model's performance on unseen domains.
We make use of large-scale VLMs like CLIP and leverage the textual feature to dynamically adjust the classifier's weights for exploring generalizable visual features.
arXiv Detail & Related papers (2024-03-21T11:58:50Z) - Memory-Efficient Prompt Tuning for Incremental Histopathology
Classification [69.46798702300042]
We present a memory-efficient prompt tuning framework to cultivate model generalization potential in economical memory cost.
We have extensively evaluated our framework with two histopathology tasks, i.e., breast cancer metastasis classification and epithelium-stroma tissue classification.
arXiv Detail & Related papers (2024-01-22T03:24:45Z) - TeG-DG: Textually Guided Domain Generalization for Face Anti-Spoofing [8.830873674673828]
Existing methods are dedicated to extracting domain-invariant features from various training domains.
The extracted features inevitably contain residual style feature bias, resulting in inferior generalization performance.
We propose the Textually Guided Domain Generalization framework, which can effectively leverage text information for cross-domain alignment.
arXiv Detail & Related papers (2023-11-30T10:13:46Z) - Towards Domain-Specific Features Disentanglement for Domain
Generalization [23.13095840134744]
We propose a novel contrastive-based disentanglement method CDDG to exploit the over-looked domain-specific features.
Specifically, CDDG learns to decouple inherent mutually exclusive features by leveraging them in the latent space.
Experiments conducted on various benchmark datasets demonstrate the superiority of our method compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-04T17:51:02Z) - Randomized Adversarial Style Perturbations for Domain Generalization [49.888364462991234]
We propose a novel domain generalization technique, referred to as Randomized Adversarial Style Perturbation (RASP)
The proposed algorithm perturbs the style of a feature in an adversarial direction towards a randomly selected class, and makes the model learn against being misled by the unexpected styles observed in unseen target domains.
We evaluate the proposed algorithm via extensive experiments on various benchmarks and show that our approach improves domain generalization performance, especially in large-scale benchmarks.
arXiv Detail & Related papers (2023-04-04T17:07:06Z) - Domain generalization Person Re-identification on Attention-aware
multi-operation strategery [8.90472129039969]
Domain generalization person re-identification (DG Re-ID) aims to directly deploy a model trained on the source domain to the unseen target domain with good generalization.
In the existing DG Re-ID methods, invariant operations are effective in extracting domain generalization features.
An Attention-aware Multi-operation Strategery (AMS) for DG Re-ID is proposed to extract more generalized features.
arXiv Detail & Related papers (2022-10-19T09:18:46Z) - Style Interleaved Learning for Generalizable Person Re-identification [69.03539634477637]
We propose a novel style interleaved learning (IL) framework for DG ReID training.
Unlike conventional learning strategies, IL incorporates two forward propagations and one backward propagation for each iteration.
We show that our model consistently outperforms state-of-the-art methods on large-scale benchmarks for DG ReID.
arXiv Detail & Related papers (2022-07-07T07:41:32Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
We argue that both domain-specific and domain-invariant features are crucial for improving the generalization ability of re-id models.
We name two-stream adaptive learning (TAL) to simultaneously model these two kinds of information.
Our framework can be applied to both single-source and multi-source domain generalization tasks.
arXiv Detail & Related papers (2021-11-29T01:27:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.