Optimal multiple-phase estimation with multi-mode NOON states against photon loss
- URL: http://arxiv.org/abs/2401.09734v2
- Date: Sun, 21 Jul 2024 03:26:39 GMT
- Title: Optimal multiple-phase estimation with multi-mode NOON states against photon loss
- Authors: Min Namkung, Dong-Hyun Kim, Seongjin Hong, Yong-Su Kim, Changhyoup Lee, Hyang-Tag Lim,
- Abstract summary: We show that a quantum advantage in estimate precision can still be achieved in the presence of photon loss.
We also show that photon-number counting via a multi-mode beam-splitter achieves the useful, albeit sub-optimal, quantum advantage.
- Score: 4.362277968017052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-mode NOON states can quantum-enhance multiple-phase estimation in the absence of photon loss. However, a multi-mode NOON state is known to be vulnerable to photon loss, and its quantum-enhancement can be dissipated by lossy environment. In this work, we demonstrate that a quantum advantage in estimate precision can still be achieved in the presence of photon loss. This is accomplished by optimizing the weights of the multi-mode NOON states according to photon loss rates in the multiple modes, including the reference mode which defines the other phases. For practical relevance, we also show that photon-number counting via a multi-mode beam-splitter achieves the useful, albeit sub-optimal, quantum advantage. We expect this work to provide valuable guidance for developing quantum-enhanced multiple-phase estimation techniques in lossy environments.
Related papers
- Persistent quantum advantage with definite photon-number states in lossy multiple-phase estimation [4.233978022468851]
We propose an optimal multiple-phase estimation scheme that is inherently robust against photon loss.
We theoretically demonstrate that the DPN state can sustain quantum enhancement in estimation precision under all levels of photon loss.
arXiv Detail & Related papers (2024-07-23T07:34:33Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Autonomous Stabilization of Fock States in an Oscillator against Multiphoton Losses [10.18499335619556]
dissipation engineering method autonomously stabilizes multi-photon Fock states against losses of multiple photons.
Results highlight potential applications in error-correctable quantum information processing against multi-photon-loss errors.
arXiv Detail & Related papers (2023-08-16T11:58:46Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Statistical parameter estimation of multimode multiphoton subtracted
thermal states of light [0.0]
Thermal states of light are widely used in quantum optics for various quantum phenomena testing.
We present a technique for statistical parameter estimation of multimode multiphoton subtracted thermal states of light.
arXiv Detail & Related papers (2021-02-16T18:39:05Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - A bright and fast source of coherent single photons [46.25143811066789]
A single photon source is a key enabling technology in device-independent quantum communication.
We report a single photon source with an especially high system efficiency.
arXiv Detail & Related papers (2020-07-24T17:08:46Z) - Two-photon phase-sensing with single-photon detection [0.0]
Path-entangled multi-photon states allow optical phase-sensing beyond the shot-noise limit.
We exploit advanced quantum state engineering based on superposing two photon-pair creation events.
We infer phase shifts by measuring the average intensity of the single-photon beam on a photodiode.
arXiv Detail & Related papers (2020-07-06T08:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.