Persistent quantum advantage with definite photon-number states in lossy multiple-phase estimation
- URL: http://arxiv.org/abs/2407.16246v1
- Date: Tue, 23 Jul 2024 07:34:33 GMT
- Title: Persistent quantum advantage with definite photon-number states in lossy multiple-phase estimation
- Authors: Min Namkung, Dong-Hyun Kim, Seongjin Hong, Changhyoup Lee, Hyang-Tag Lim,
- Abstract summary: We propose an optimal multiple-phase estimation scheme that is inherently robust against photon loss.
We theoretically demonstrate that the DPN state can sustain quantum enhancement in estimation precision under all levels of photon loss.
- Score: 4.233978022468851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple-phase estimation exploiting quantum states has broad applications in novel sensing and imaging technologies. However, the unavoidable presence of lossy environments in practical settings often diminishes the precision of phase estimations. To address this challenge, we propose an optimal multiple-phase estimation scheme that is inherently robust against photon loss, ensuring a persistent quantum advantage across all levels of photon loss. The scheme employs a multi-mode definite photon-number (DPN) state with weights optimized for given levels of photon loss. We theoretically demonstrate that the DPN state can sustain quantum enhancement in estimation precision under all levels of photon loss, compared to the classical benchmark that employs a coherent state input. The proposed scheme using DPN states generalizes earlier studies employing NOON states, which are only optimal when photon loss is small. We believe that our study, demonstrating persistent robustness to photon loss, paves the way for significant advancements in quantum-enhanced sensing technologies, enabling practical applications and quantum advantages in real-world scenarios.
Related papers
- A novel multi-photon entangled state with enhanced resilience to path loss [1.3654846342364308]
This paper introduces a novel multi-photon entangled state, which generalizes the maximally entangled single-photon state.
We demonstrate the novelty of the proposed state through a simplified target detection model and illustrate its superior performance over traditional single-photon protocols.
Our findings suggest that the proposed multi-photon state holds significant promise for enhancing the efficiency and reliability of photonic applications subject to loss.
arXiv Detail & Related papers (2024-05-13T19:12:39Z) - Optimal multiple-phase estimation with multi-mode NOON states against photon loss [4.362277968017052]
We show that a quantum advantage in estimate precision can still be achieved in the presence of photon loss.
We also show that photon-number counting via a multi-mode beam-splitter achieves the useful, albeit sub-optimal, quantum advantage.
arXiv Detail & Related papers (2024-01-18T05:22:12Z) - Heisenberg-Limited Quantum Lidar for Joint Range and Velocity Estimation [0.4604003661048266]
We propose a quantum lidar protocol to jointly estimate the range and velocity of a target by illuminating it with a single beam of pulsed displaced squeezed light.
We show that the mean-squared errors of both range and velocity estimations are inversely proportional to the squared number of signal photons, simultaneously attaining the Heisenberg limit.
arXiv Detail & Related papers (2023-11-24T15:29:03Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Protecting the quantum interference of cat states by phase-space
compression [45.82374977939355]
Cat states with their unique phase-space interference properties are ideal candidates for understanding quantum mechanics.
They are highly susceptible to photon loss, which inevitably diminishes their quantum non-Gaussian features.
Here, we protect these non-Gaussian features by compressing the phase-space distribution of a cat state.
arXiv Detail & Related papers (2022-12-02T16:06:40Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Error mitigation on a near-term quantum photonic device [0.9236074230806577]
We present two schemes to mitigate the effects of photon loss for a Gaussian Boson Sampling device.
We show that with a moderate cost of classical post processing, the effects of photon loss can be significantly suppressed for a certain amount of loss.
arXiv Detail & Related papers (2020-08-15T07:46:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.