Applications of Machine Learning to Optimizing Polyolefin Manufacturing
- URL: http://arxiv.org/abs/2401.09753v1
- Date: Thu, 18 Jan 2024 06:57:05 GMT
- Title: Applications of Machine Learning to Optimizing Polyolefin Manufacturing
- Authors: Niket Sharma and Y.A. Liu
- Abstract summary: This chapter focuses on leveraging machine learning (ML) in chemical and polyolefin manufacturing optimization.
It's crafted for both novices and seasoned professionals keen on the latest ML applications in chemical processes.
- Score: 0.9926212277119676
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This chapter is a preprint from our book by , focusing on leveraging machine
learning (ML) in chemical and polyolefin manufacturing optimization. It's
crafted for both novices and seasoned professionals keen on the latest ML
applications in chemical processes. We trace the evolution of AI and ML in
chemical industries, delineate core ML components, and provide resources for ML
beginners. A detailed discussion on various ML methods is presented, covering
regression, classification, and unsupervised learning techniques, with
performance metrics and examples. Ensemble methods, deep learning networks,
including MLP, DNNs, RNNs, CNNs, and transformers, are explored for their
growing role in chemical applications. Practical workshops guide readers
through predictive modeling using advanced ML algorithms. The chapter
culminates with insights into science-guided ML, advocating for a hybrid
approach that enhances model accuracy. The extensive bibliography offers
resources for further research and practical implementation. This chapter aims
to be a thorough primer on ML's practical application in chemical engineering,
particularly for polyolefin production, and sets the stage for continued
learning in subsequent chapters. Please cite the original work [169,170] when
referencing.
Related papers
- Quantum Machine Learning: A Hands-on Tutorial for Machine Learning Practitioners and Researchers [51.03113410951073]
This tutorial introduces readers with a background in AI to quantum machine learning (QML)
For self-consistency, this tutorial covers foundational principles, representative QML algorithms, their potential applications, and critical aspects such as trainability, generalization, and computational complexity.
arXiv Detail & Related papers (2025-02-03T08:33:44Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - Towards Optimal Learning of Language Models [124.65669486710992]
We present a theory for the optimal learning of language models (LMs)
We derive a theorem, named Learning Law, to reveal the properties of the dynamics in the optimal learning process under our objective.
We empirically verify that the optimal learning of LMs essentially stems from the improvement of the coefficients in the scaling law of LMs.
arXiv Detail & Related papers (2024-02-27T18:52:19Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
The paper reviews cutting edge technologies and recent trends on machine learning methods applied to real-world manipulation tasks.
The rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue.
arXiv Detail & Related papers (2023-09-22T01:06:32Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - MLOps Spanning Whole Machine Learning Life Cycle: A Survey [4.910132890978536]
Google AlphaGos win has significantly motivated and sped up machine learning (ML) research and development.
This paper is aimed to present a clear picture of the state-of-the-art of the existing ML technologies with a comprehensive survey.
arXiv Detail & Related papers (2023-04-13T04:12:38Z) - Machine Learning Operations (MLOps): Overview, Definition, and
Architecture [0.0]
The paradigm of Machine Learning Operations (MLOps) addresses this issue.
MLOps is still a vague term and its consequences for researchers and professionals are ambiguous.
We provide an aggregated overview of the necessary components, and roles, as well as the associated architecture and principles.
arXiv Detail & Related papers (2022-05-04T19:38:48Z) - Machine Learning Force Fields [54.48599172620472]
Machine Learning (ML) has enabled numerous advances in computational chemistry.
One of the most promising applications is the construction of ML-based force fields (FFs)
This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them.
arXiv Detail & Related papers (2020-10-14T13:14:14Z) - Machine Learning Pipelines: Provenance, Reproducibility and FAIR Data
Principles [0.0]
We describe our goals and initial steps in supporting the end-to-end of machine learning pipelines.
We investigate which factors beyond the availability of source code and datasets influence the influence of ML experiments.
We propose ways to apply FAIR data practices to ML experiments.
arXiv Detail & Related papers (2020-06-22T10:17:34Z) - Insights into Performance Fitness and Error Metrics for Machine Learning [1.827510863075184]
Machine learning (ML) is the field of training machines to achieve high level of cognition and perform human-like analysis.
This paper examines a number of the most commonly-used performance fitness and error metrics for regression and classification algorithms.
arXiv Detail & Related papers (2020-05-17T22:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.