A Survey on Learning from Graphs with Heterophily: Recent Advances and Future Directions
- URL: http://arxiv.org/abs/2401.09769v4
- Date: Mon, 30 Sep 2024 05:56:58 GMT
- Title: A Survey on Learning from Graphs with Heterophily: Recent Advances and Future Directions
- Authors: Chenghua Gong, Yao Cheng, Jianxiang Yu, Can Xu, Caihua Shan, Siqiang Luo, Xiang Li,
- Abstract summary: Heterophilic graphs, where linked nodes are prone to be with different labels or dissimilar features, have recently attracted significant attention.
Various graph heterophily measures, benchmark datasets, and learning paradigms are emerging rapidly.
- Score: 35.544281678888986
- License:
- Abstract: Graphs are structured data that models complex relations between real-world entities. Heterophilic graphs, where linked nodes are prone to be with different labels or dissimilar features, have recently attracted significant attention and found many real-world applications. Meanwhile, increasing efforts have been made to advance learning from graphs with heterophily. Various graph heterophily measures, benchmark datasets, and learning paradigms are emerging rapidly. In this survey, we comprehensively review existing works on learning from graphs with heterophily. First, we overview over 500 publications, of which more than 340 are directly related to heterophilic graphs. After that, we survey existing metrics of graph heterophily and list recent benchmark datasets. Further, we systematically categorize existing methods based on a hierarchical taxonomy including GNN models, learning paradigms and practical applications. In addition, broader topics related to graph heterophily are also included. Finally, we discuss the primary challenges of existing studies and highlight promising avenues for future research.
Related papers
- Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data.
Identifying meaningful graph laws can significantly enhance the effectiveness of various applications.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Non-Homophilic Graph Pre-Training and Prompt Learning [11.996173149569627]
We propose ProNoG, a novel pre-training and prompt learning framework for non-homophilic graphs.
First, we analyze existing graph pre-training methods, providing theoretical insights into the choice of pre-training tasks.
Second, recognizing that each node exhibits unique non-homophilic characteristics, we propose a conditional network to characterize the node-specific patterns in downstream tasks.
arXiv Detail & Related papers (2024-08-22T17:57:31Z) - The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - HiGPT: Heterogeneous Graph Language Model [27.390123898556805]
Heterogeneous graph learning aims to capture complex relationships and diverse semantics among entities in a heterogeneous graph.
Existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets.
We propose HiGPT, a general large graph model with Heterogeneous graph instruction-tuning paradigm.
arXiv Detail & Related papers (2024-02-25T08:07:22Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Few-Shot Semantic Relation Prediction across Heterogeneous Graphs [21.607075407798362]
In real-world scenarios, new semantic relations constantly emerge and they typically appear with only a few labeled data.
This inspires a novel problem of few-shot semantic relation prediction across heterogeneous graphs.
We propose a Meta-learning based Graph neural network for Semantic relation prediction, named MetaGS.
arXiv Detail & Related papers (2022-07-11T01:38:09Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.