Few-Shot Semantic Relation Prediction across Heterogeneous Graphs
- URL: http://arxiv.org/abs/2207.05068v1
- Date: Mon, 11 Jul 2022 01:38:09 GMT
- Title: Few-Shot Semantic Relation Prediction across Heterogeneous Graphs
- Authors: Pengfei Ding, Yan Wang, Guanfeng Liu, and Xiaofang Zhou
- Abstract summary: In real-world scenarios, new semantic relations constantly emerge and they typically appear with only a few labeled data.
This inspires a novel problem of few-shot semantic relation prediction across heterogeneous graphs.
We propose a Meta-learning based Graph neural network for Semantic relation prediction, named MetaGS.
- Score: 21.607075407798362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic relation prediction aims to mine the implicit relationships between
objects in heterogeneous graphs, which consist of different types of objects
and different types of links. In real-world scenarios, new semantic relations
constantly emerge and they typically appear with only a few labeled data. Since
a variety of semantic relations exist in multiple heterogeneous graphs, the
transferable knowledge can be mined from some existing semantic relations to
help predict the new semantic relations with few labeled data. This inspires a
novel problem of few-shot semantic relation prediction across heterogeneous
graphs. However, the existing methods cannot solve this problem because they
not only require a large number of labeled samples as input, but also focus on
a single graph with a fixed heterogeneity. Targeting this novel and challenging
problem, in this paper, we propose a Meta-learning based Graph neural network
for Semantic relation prediction, named MetaGS. Firstly, MetaGS decomposes the
graph structure between objects into multiple normalized subgraphs, then adopts
a two-view graph neural network to capture local heterogeneous information and
global structure information of these subgraphs. Secondly, MetaGS aggregates
the information of these subgraphs with a hyper-prototypical network, which can
learn from existing semantic relations and adapt to new semantic relations.
Thirdly, using the well-initialized two-view graph neural network and
hyper-prototypical network, MetaGS can effectively learn new semantic relations
from different graphs while overcoming the limitation of few labeled data.
Extensive experiments on three real-world datasets have demonstrated the
superior performance of MetaGS over the state-of-the-art methods.
Related papers
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
Homophily distribution differences between different classes are significantly greater than those in homophilic and heterophilic graphs.
We introduce a new metric called Class Homophily Variance, which quantitatively describes this phenomenon.
To mitigate its impact, we propose a novel GNN model named Homophily Edge Generation Graph Neural Network (HedGe)
arXiv Detail & Related papers (2024-03-15T14:26:53Z) - HiGPT: Heterogeneous Graph Language Model [27.390123898556805]
Heterogeneous graph learning aims to capture complex relationships and diverse semantics among entities in a heterogeneous graph.
Existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets.
We propose HiGPT, a general large graph model with Heterogeneous graph instruction-tuning paradigm.
arXiv Detail & Related papers (2024-02-25T08:07:22Z) - MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
Learning correspondences aims to find correct correspondences from the initial correspondence set with an uneven correspondence distribution and a low inlier rate.
Recent advances usually use graph neural networks (GNNs) to build a single type of graph or stack local graphs into the global one to complete the task.
We propose MGNet to effectively combine multiple complementary graphs.
arXiv Detail & Related papers (2024-01-10T07:58:44Z) - GSim: A Graph Neural Network based Relevance Measure for Heterogeneous
Graphs [22.040693985085404]
Graph Neural Network (GNN) has been widely applied in many graph mining tasks, but it has not been applied for measuring relevance yet.
We propose a novel GNN-based relevance measure, namely GSim.
We then propose a context path-based graph neural network (CP-GNN) to automatically leverage semantics in heterogeneous graphs.
arXiv Detail & Related papers (2022-08-12T07:26:05Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - DisenHAN: Disentangled Heterogeneous Graph Attention Network for
Recommendation [11.120241862037911]
Heterogeneous information network has been widely used to alleviate sparsity and cold start problems in recommender systems.
We propose a novel disentangled heterogeneous graph attention network DisenHAN for top-$N$ recommendation.
arXiv Detail & Related papers (2021-06-21T06:26:10Z) - Learning on heterogeneous graphs using high-order relations [37.64632406923687]
We propose an approach for learning on heterogeneous graphs without using meta-paths.
We decompose a heterogeneous graph into different homogeneous relation-type graphs, which are then combined to create higher-order relation-type representations.
arXiv Detail & Related papers (2021-03-29T12:02:47Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.