論文の概要: A Fast, Performant, Secure Distributed Training Framework For Large
Language Model
- arxiv url: http://arxiv.org/abs/2401.09796v1
- Date: Thu, 18 Jan 2024 08:33:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 17:19:36.256809
- Title: A Fast, Performant, Secure Distributed Training Framework For Large
Language Model
- Title(参考訳): 大規模言語モデルのための高速で高性能でセキュアな分散トレーニングフレームワーク
- Authors: Wei Huang, Yinggui Wang, Anda Cheng, Aihui Zhou, Chaofan Yu, Lei Wang
- Abstract要約: モデルスライシングに基づくセキュア分散LLMを提案する。
クライアント側とサーバ側の両方にTEE(Trusted Execution Environment)をデプロイします。
セキュア通信は、軽量暗号化により、TEEおよび一般的な環境で実行される。
- 参考スコア(独自算出の注目度): 8.547104574876887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The distributed (federated) LLM is an important method for co-training the
domain-specific LLM using siloed data. However, maliciously stealing model
parameters and data from the server or client side has become an urgent problem
to be solved. In this paper, we propose a secure distributed LLM based on model
slicing. In this case, we deploy the Trusted Execution Environment (TEE) on
both the client and server side, and put the fine-tuned structure (LoRA or
embedding of P-tuning v2) into the TEE. Then, secure communication is executed
in the TEE and general environments through lightweight encryption. In order to
further reduce the equipment cost as well as increase the model performance and
accuracy, we propose a split fine-tuning scheme. In particular, we split the
LLM by layers and place the latter layers in a server-side TEE (the client does
not need a TEE). We then combine the proposed Sparsification Parameter
Fine-tuning (SPF) with the LoRA part to improve the accuracy of the downstream
task. Numerous experiments have shown that our method guarantees accuracy while
maintaining security.
- Abstract(参考訳): 分散LLMは、サイロデータを用いてドメイン固有のLLMを協調訓練するための重要な方法である。
しかし、悪意あるモデルパラメータとデータをサーバまたはクライアント側から盗むことは、解決すべき緊急の問題となっている。
本稿では,モデルスライシングに基づくセキュア分散LLMを提案する。
この場合、クライアント側とサーバ側の両方にTrusted Execution Environment(TEE)をデプロイし、微調整構造(LoRAまたはP-tuning v2)をTEEに組み込む。
そして、軽量暗号化により、TEEおよび一般的な環境でセキュアな通信が実行される。
機器コストをさらに削減し,モデル性能と精度を向上させるため,分割微調整方式を提案する。
特に、LLMをレイヤで分割し、後者のレイヤをサーバサイドのTEE(クライアントはTEEを必要としない)に配置します。
次に,提案したスパシフィケーションパラメータファインチューニング(SPF)とLoRA部分を組み合わせることで,下流タスクの精度を向上させる。
多数の実験により,セキュリティを維持しながら精度を保証できることが示されている。
関連論文リスト
- Federated LLMs Fine-tuned with Adaptive Importance-Aware LoRA [24.871424801066006]
LLM(Large Language Models)のフェデレートされた微調整は、データプライバシを保持しながら、さまざまなデータセットにまたがるタスク固有の適応を可能にする。
ヘテロジニアス適応型低ランク適応(LoRA)ファインチューニングLDMフレームワーク(HAFL)を提案する。
提案手法は,低通信サイズで迅速に収束し,クライアントへのモデル配信時の性能劣化を回避する。
論文 参考訳(メタデータ) (2024-11-10T19:59:54Z) - Mixture of Attentions For Speculative Decoding [17.344416130742232]
投機的復号法(SD)は、より小さなモデルを利用して将来のトークンを効率的に提案し、それを大規模言語モデルによって並列に検証する。
SDモデルには、トレーニング中のオン・ポリティネスの欠如や部分観測可能性の欠如など、いくつかの制限がある。
SD用ミクチャ・オブ・アテンションの導入により,小型モデルのより基礎的なアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-04T10:25:52Z) - FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model [48.33280660752336]
大規模言語モデル(LLM)は、適切なデータで微調整した後、多くのドメイン固有のタスクで素晴らしいパフォーマンスを示す。
多くのドメイン固有のデータは、プライベートに複数の所有者に分散される。
我々は,フェデレート学習のための資源効率の高いLLM微調整手法であるFedBiOTを紹介する。
論文 参考訳(メタデータ) (2024-06-25T16:45:47Z) - Safely Learning with Private Data: A Federated Learning Framework for Large Language Model [3.1077263218029105]
フェデレートラーニング(FL)は、分散プライベートデータを用いたモデルのトレーニングに理想的なソリューションである。
FedAvgのような従来のフレームワークは、大きな言語モデル(LLM)には適さない
本稿では,サーバサイド攻撃とピアクライアント攻撃の両方によるデータ漏洩を防止するFL-GLMを提案する。
論文 参考訳(メタデータ) (2024-06-21T06:43:15Z) - Safe LoRA: the Silver Lining of Reducing Safety Risks when Fine-tuning Large Language Models [51.20476412037321]
カスタマイズされたデータセット、ドメイン固有のタスク、その他のプライベートニーズに対するパフォーマンスを高めるためには、微調整された大きな言語モデル(LLM)が必要である。
Safe LoRAは、選択したレイヤからのLoRA重みのプロジェクションを安全に整合したサブスペースに導入することで、オリジナルのLoRA実装のワンラインパッチである。
我々の実験は、純粋に悪意のあるデータに対して微調整を行う場合、Safe LoRAは元のアライメントモデルと同様の安全性を保っていることを示した。
論文 参考訳(メタデータ) (2024-05-27T05:04:05Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
事前訓練された大規模言語モデル(LLM)は、自然言語命令に対する応答性を改善するために微調整が必要である。
FedKSeedは、ランダムシードの有限セットによるゼロ階最適化を採用している。
サーバとクライアント間の通信要求を大幅に減らし、ランダムなシードをわずかに減らします。
論文 参考訳(メタデータ) (2023-12-11T13:03:21Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Subspace based Federated Unlearning [75.90552823500633]
フェデレート・アンラーニング(FL)は、ユーザが忘れられる権利を満たすために、特定のターゲットクライアントのFLへの貢献を取り除くことを目的としている。
既存のフェデレートされた未学習アルゴリズムでは、パラメータの更新履歴をサーバに格納する必要がある。
そこで我々は,SFUと呼ばれる,単純なyet効率のサブスペースに基づくフェデレーションアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2023-02-24T04:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。