論文の概要: Mixture of Attentions For Speculative Decoding
- arxiv url: http://arxiv.org/abs/2410.03804v1
- Date: Fri, 4 Oct 2024 10:25:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 16:10:45.616343
- Title: Mixture of Attentions For Speculative Decoding
- Title(参考訳): 投機的復号化のための注意の混合
- Authors: Matthieu Zimmer, Milan Gritta, Gerasimos Lampouras, Haitham Bou Ammar, Jun Wang,
- Abstract要約: 投機的復号法(SD)は、より小さなモデルを利用して将来のトークンを効率的に提案し、それを大規模言語モデルによって並列に検証する。
SDモデルには、トレーニング中のオン・ポリティネスの欠如や部分観測可能性の欠如など、いくつかの制限がある。
SD用ミクチャ・オブ・アテンションの導入により,小型モデルのより基礎的なアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 17.344416130742232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growth in the number of parameters of Large Language Models (LLMs) has led to a significant surge in computational requirements, making them challenging and costly to deploy. Speculative decoding (SD) leverages smaller models to efficiently propose future tokens, which are then verified by the LLM in parallel. Small models that utilise activations from the LLM currently achieve the fastest decoding speeds. However, we identify several limitations of SD models including the lack of on-policyness during training and partial observability. To address these shortcomings, we propose a more grounded architecture for small models by introducing a Mixture of Attentions for SD. Our novel architecture can be applied in two scenarios: a conventional single device deployment and a novel client-server deployment where the small model is hosted on a consumer device and the LLM on a server. In a single-device scenario, we demonstrate state-of-the-art speedups improving EAGLE-2 by 9.5% and its acceptance length by 25%. In a client-server setting, our experiments demonstrate: 1) state-of-the-art latencies with minimal calls to the server for different network conditions, and 2) in the event of a complete disconnection, our approach can maintain higher accuracy compared to other SD methods and demonstrates advantages over API calls to LLMs, which would otherwise be unable to continue the generation process.
- Abstract(参考訳): LLM(Large Language Models)のパラメータ数の増加により、計算要求が大幅に急増し、デプロイが困難でコストがかかるようになった。
投機的復号法(SD)はより小さなモデルを利用して将来のトークンを効率的に提案し、LLMによって並列に検証される。
LLMからのアクティベーションを利用する小型モデルは、現在最も高速な復号速度を実現している。
しかし,SDモデルには,トレーニング中の政治力の欠如や部分観測可能性の欠如など,いくつかの制限がある。
これらの欠点に対処するために,SD用ミキサー・オブ・アテンションを導入することで,小型モデルのより基礎的なアーキテクチャを提案する。
我々の新しいアーキテクチャは、従来の単一デバイスデプロイメントと、小型モデルをコンシューマデバイスにホストする新しいクライアントサーバデプロイメントと、サーバ上のLLMという2つのシナリオに適用できる。
単一デバイスシナリオでは、EAGLE-2を9.5%改善し、受け入れ期間を25%改善する最先端のスピードアップを実証する。
クライアントサーバの設定で、我々の実験は以下のとおりである。
1) ネットワーク条件の異なるサーバへの最小限の呼び出しによる最先端のレイテンシ
2) 完全切断の場合,本手法は他のSD手法と比較して精度が向上し, 生成プロセスの継続が不可能なLCMに対するAPI呼び出しよりも有利であることを示す。
関連論文リスト
- Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
投機的復号法(SD)は,大規模言語モデル(LLM)の推論を高速化するパラダイムとして広く用いられている。
本稿では,LLMの中間層を適応的に選択して推論時にスキップする,オンザフライの自己投機的復号アルゴリズムであるSWIFTを紹介する。
SWIFTは生成したテキストの元の分布を保ちながら1.3x-1.6xの高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-09T14:15:30Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - ELMS: Elasticized Large Language Models On Mobile Devices [5.689405542579458]
デバイス上の大規模言語モデル(LLM)は、プライバシー問題に対処しながら、UI自動化などのアプリケーションを可能にする、モバイルAIに革命をもたらしている。
ELMSは、モデルとプロンプト次元の両方で弾力性を提供するように設計されたデバイス上でのLCMサービスである。
トランスモデルに固有の置換整合性を利用して高品質で柔軟なサブモデルを作成するワンタイムリオーダーニューロニング技術。
プロンプトを効率的に洗練し、モデルプロンプト間の弾性適応をコーディネートするデュアルヘッドコンパクト言語モデル。
論文 参考訳(メタデータ) (2024-09-08T06:32:08Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
多様なアプリケーションへの微調整された大規模言語モデル(LLM)は、複雑な要求を満たすために不可欠である。
近年の研究では、微調整LDMをベースモデルと対応するデルタウェイトに分解し、低ランクまたは低ビットのアプローチで圧縮してコストを削減することが示唆されている。
本研究では,従来の低ランク圧縮法と低ビット圧縮法がタスク固有の微調整LDMのモデル性能を著しく損なうことを観察する。
論文 参考訳(メタデータ) (2024-06-13T07:57:27Z) - Distributed Inference and Fine-tuning of Large Language Models Over The
Internet [91.00270820533272]
大規模言語モデル(LLM)は、多くのNLPタスクで有用であり、サイズが向上する。
これらのモデルはハイエンドのハードウェアを必要とするため、ほとんどの研究者にはアクセスできない。
本研究では,システムスループットの最大化のためにデバイスを自動的に割り当てるフォールトトレラント推論アルゴリズムとロードバランシングプロトコルを開発する。
論文 参考訳(メタデータ) (2023-12-13T18:52:49Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
事前訓練された大規模言語モデル(LLM)は、自然言語命令に対する応答性を改善するために微調整が必要である。
FedKSeedは、ランダムシードの有限セットによるゼロ階最適化を採用している。
サーバとクライアント間の通信要求を大幅に減らし、ランダムなシードをわずかに減らします。
論文 参考訳(メタデータ) (2023-12-11T13:03:21Z) - Enhancing Neural Architecture Search with Multiple Hardware Constraints
for Deep Learning Model Deployment on Tiny IoT Devices [17.919425885740793]
微分可能なNAS最適化手法に複数の制約を組み込む新しい手法を提案する。
単一の検索で、それぞれ87.4%と54.2%のメモリとレイテンシを削減できることが示されている。
論文 参考訳(メタデータ) (2023-10-11T06:09:14Z) - PFSL: Personalized & Fair Split Learning with Data & Label Privacy for
thin clients [0.5144809478361603]
PFSLは分散分割学習の新しいフレームワークであり、多数のシンクライアントが並列にトランスファー学習を行う。
クライアントモデルのパーソナライズを行うための軽量なステップを実装し,それぞれのデータ分布に対して高いパフォーマンスを実現する。
我々の精度は現在のアルゴリズムSLをはるかに上回り、いくつかの実生活ベンチマークにおける集中学習に非常に近い。
論文 参考訳(メタデータ) (2023-03-19T10:38:29Z) - Speculative Decoding with Big Little Decoder [108.95187338417541]
Big Little Decoder (BiLD) は、幅広いテキスト生成アプリケーションの推論効率と遅延を改善するフレームワークである。
NVIDIA T4 GPUでは、当社のフレームワークは最大2.12倍の高速化を実現し、生成品質の最小化を実現している。
私たちのフレームワークは完全にプラグアンドプレイで、トレーニングプロセスやモデルアーキテクチャの変更なしに適用できます。
論文 参考訳(メタデータ) (2023-02-15T18:55:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。