論文の概要: Enhancing the Fairness and Performance of Edge Cameras with Explainable
AI
- arxiv url: http://arxiv.org/abs/2401.09852v1
- Date: Thu, 18 Jan 2024 10:08:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 17:10:24.336448
- Title: Enhancing the Fairness and Performance of Edge Cameras with Explainable
AI
- Title(参考訳): 説明可能なAIによるエッジカメラの公正性とパフォーマンス向上
- Authors: Truong Thanh Hung Nguyen, Vo Thanh Khang Nguyen, Quoc Hung Cao, Van
Binh Truong, Quoc Khanh Nguyen, Hung Cao
- Abstract要約: 本研究では,モデルデバッグに Explainable AI (XAI) を用いた診断手法を提案する。
トレーニングデータセットが主なバイアス源であることに気付き、ソリューションとしてモデル拡張を提案しました。
- 参考スコア(独自算出の注目度): 3.4719449211802456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rising use of Artificial Intelligence (AI) in human detection on Edge
camera systems has led to accurate but complex models, challenging to interpret
and debug. Our research presents a diagnostic method using Explainable AI (XAI)
for model debugging, with expert-driven problem identification and solution
creation. Validated on the Bytetrack model in a real-world office Edge network,
we found the training dataset as the main bias source and suggested model
augmentation as a solution. Our approach helps identify model biases, essential
for achieving fair and trustworthy models.
- Abstract(参考訳): エッジカメラシステムにおける人間の検出における人工知能(AI)の利用の増加は、正確だが複雑なモデルをもたらし、解釈とデバッグを困難にしている。
本研究では,モデルデバッギングに Explainable AI (XAI) を用いた診断手法を提案する。
実世界のオフィスエッジネットワークでBytetrackモデルを検証することで、トレーニングデータセットを主なバイアスソースとして見つけ、ソリューションとしてモデル拡張を提案しました。
私たちのアプローチは、公正で信頼できるモデルを達成するために不可欠なモデルバイアスを特定するのに役立ちます。
関連論文リスト
- XEdgeAI: A Human-centered Industrial Inspection Framework with Data-centric Explainable Edge AI Approach [2.0209172586699173]
本稿では,新しいXAI統合視覚品質検査フレームワークを提案する。
我々のフレームワークはXAIとLarge Vision Language Modelを組み込んで人間中心の解釈可能性を提供する。
このアプローチは、重要な産業アプリケーションに信頼性と解釈可能なAIツールを広く採用する道を開くものだ。
論文 参考訳(メタデータ) (2024-07-16T14:30:24Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Red Teaming Models for Hyperspectral Image Analysis Using Explainable AI [10.475941327617686]
本稿では,ハイパースペクトル画像を用いた機械学習モデルの検討手法を提案する。
我々は、説明可能なAI(XAI)ドメインからのポストホックな説明手法を用いて、最高のパフォーマンスモデルを評価する。
当社のアプローチは,重要な欠点を指摘し,検証することで,モデルを効果的にチーム化するものです。
論文 参考訳(メタデータ) (2024-03-12T18:28:32Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - Fusing Models with Complementary Expertise [42.099743709292866]
データ分布の相補的な知識で専門家モデルの出力を融合させるFoE(Fusion of Experts)問題を考える。
我々の方法は差別的タスクと生成的タスクの両方に当てはまる。
テスト時に専門家によるモデル評価の回数を減らすことが望まれる「フルーガル」設定にメソッドを拡張します。
論文 参考訳(メタデータ) (2023-10-02T18:31:35Z) - A model-agnostic approach for generating Saliency Maps to explain
inferred decisions of Deep Learning Models [2.741266294612776]
本稿では,モデル出力にのみアクセス可能な有能マップを生成するためのモデルに依存しない手法を提案する。
我々は微分進化法を用いて、モデルの意思決定プロセスにおいて、どの画像ピクセルが最も影響があるかを特定する。
論文 参考訳(メタデータ) (2022-09-19T10:28:37Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
モデルの信号認識性を高めるためのデータ駆動型手法を提案する。
コード複雑性のSE概念とカリキュラム学習のAIテクニックを組み合わせる。
モデル信号認識における最大4.8倍の改善を実現している。
論文 参考訳(メタデータ) (2021-11-10T17:58:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。