Motion-Zero: Zero-Shot Moving Object Control Framework for Diffusion-Based Video Generation
- URL: http://arxiv.org/abs/2401.10150v4
- Date: Wed, 08 Jan 2025 15:15:12 GMT
- Title: Motion-Zero: Zero-Shot Moving Object Control Framework for Diffusion-Based Video Generation
- Authors: Changgu Chen, Junwei Shu, Gaoqi He, Changbo Wang, Yang Li,
- Abstract summary: We propose a novel zero-shot moving object trajectory control framework, Motion-Zero, to enable a bounding-box-trajectories-controlled text-to-video diffusion model.
Our method can be flexibly applied to various state-of-the-art video diffusion models without any training process.
- Score: 10.5019872575418
- License:
- Abstract: Recent large-scale pre-trained diffusion models have demonstrated a powerful generative ability to produce high-quality videos from detailed text descriptions. However, exerting control over the motion of objects in videos generated by any video diffusion model is a challenging problem. In this paper, we propose a novel zero-shot moving object trajectory control framework, Motion-Zero, to enable a bounding-box-trajectories-controlled text-to-video diffusion model. To this end, an initial noise prior module is designed to provide a position-based prior to improve the stability of the appearance of the moving object and the accuracy of position. In addition, based on the attention map of the U-net, spatial constraints are directly applied to the denoising process of diffusion models, which further ensures the positional and spatial consistency of moving objects during the inference. Furthermore, temporal consistency is guaranteed with a proposed shift temporal attention mechanism. Our method can be flexibly applied to various state-of-the-art video diffusion models without any training process. Extensive experiments demonstrate our proposed method can control the motion trajectories of objects and generate high-quality videos. Our project page is https://vpx-ecnu.github.io/MotionZero-website/
Related papers
- MotionMatcher: Motion Customization of Text-to-Video Diffusion Models via Motion Feature Matching [27.28898943916193]
Text-to-video (T2V) diffusion models have promising capabilities in synthesizing realistic videos from input text prompts.
In this work, we tackle the motion customization problem, where a reference video is provided as motion guidance.
We propose MotionMatcher, a motion customization framework that fine-tunes the pre-trained T2V diffusion model at the feature level.
arXiv Detail & Related papers (2025-02-18T19:12:51Z) - MotionAgent: Fine-grained Controllable Video Generation via Motion Field Agent [58.09607975296408]
We propose MotionAgent, enabling fine-grained motion control for text-guided image-to-video generation.
The key technique is the motion field agent that converts motion information in text prompts into explicit motion fields.
We construct a subset of VBench to evaluate the alignment of motion information in the text and the generated video, outperforming other advanced models on motion generation accuracy.
arXiv Detail & Related papers (2025-02-05T14:26:07Z) - Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.
We translate high-level user requests into detailed, semi-dense motion prompts.
We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - DreamVideo-2: Zero-Shot Subject-Driven Video Customization with Precise Motion Control [42.506988751934685]
We present DreamVideo-2, a zero-shot video customization framework capable of generating videos with a specific subject and motion trajectory.
Specifically, we introduce reference attention, which leverages the model's inherent capabilities for subject learning.
We devise a mask-guided motion module to achieve precise motion control by fully utilizing the robust motion signal of box masks.
arXiv Detail & Related papers (2024-10-17T17:52:57Z) - Ctrl-V: Higher Fidelity Video Generation with Bounding-Box Controlled Object Motion [8.068194154084967]
This paper tackles a challenge of how to exert precise control over object motion for realistic video synthesis.
To accomplish this, we control object movements using bounding boxes and extend this control to the renderings of 2D or 3D boxes in pixel space.
Our method, Ctrl-V, leverages modified and fine-tuned Stable Video Diffusion (SVD) models to solve both trajectory and video generation.
arXiv Detail & Related papers (2024-06-09T03:44:35Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
Spectral Motion Alignment (SMA) is a framework that refines and aligns motion vectors using Fourier and wavelet transforms.
SMA learns motion patterns by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics.
Extensive experiments demonstrate SMA's efficacy in improving motion transfer while maintaining computational efficiency and compatibility across various video customization frameworks.
arXiv Detail & Related papers (2024-03-22T14:47:18Z) - Direct-a-Video: Customized Video Generation with User-Directed Camera Movement and Object Motion [34.404342332033636]
We introduce Direct-a-Video, a system that allows users to independently specify motions for multiple objects as well as camera's pan and zoom movements.
For camera movement, we introduce new temporal cross-attention layers to interpret quantitative camera movement parameters.
Both components operate independently, allowing individual or combined control, and can generalize to open-domain scenarios.
arXiv Detail & Related papers (2024-02-05T16:30:57Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
We introduce MotionCrafter, a one-shot instance-guided motion customization method.
MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model.
During training, a frozen base model provides appearance normalization, effectively separating appearance from motion.
arXiv Detail & Related papers (2023-12-08T16:31:04Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) is a novel one-shot tuning approach crafted to adapt temporal attention layers within video diffusion models.
Our approach introduces a novel motion distillation objective using residual vectors between consecutive frames as a motion reference.
We validate our method against state-of-the-art video generative models across diverse real-world motions and contexts.
arXiv Detail & Related papers (2023-12-01T06:50:11Z) - MoVideo: Motion-Aware Video Generation with Diffusion Models [97.03352319694795]
We propose a novel motion-aware generation (MoVideo) framework that takes motion into consideration from two aspects: video depth and optical flow.
MoVideo achieves state-of-the-art results in both text-to-video and image-to-video generation, showing promising prompt consistency, frame consistency and visual quality.
arXiv Detail & Related papers (2023-11-19T13:36:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.