LMP: Leveraging Motion Prior in Zero-Shot Video Generation with Diffusion Transformer
- URL: http://arxiv.org/abs/2505.14167v1
- Date: Tue, 20 May 2025 10:18:29 GMT
- Title: LMP: Leveraging Motion Prior in Zero-Shot Video Generation with Diffusion Transformer
- Authors: Changgu Chen, Xiaoyan Yang, Junwei Shu, Changbo Wang, Yang Li,
- Abstract summary: We propose the Leveraging Motion Prior (LMP) framework for zero-shot video generation.<n>Our framework harnesses the powerful generative capabilities of pre-trained diffusion transformers to enable motion in the generated videos to reference user-provided motion videos.<n>Our approach achieves state-of-the-art performance in generation quality, prompt-video consistency, and control capability.
- Score: 10.44905923812975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, large-scale pre-trained diffusion transformer models have made significant progress in video generation. While current DiT models can produce high-definition, high-frame-rate, and highly diverse videos, there is a lack of fine-grained control over the video content. Controlling the motion of subjects in videos using only prompts is challenging, especially when it comes to describing complex movements. Further, existing methods fail to control the motion in image-to-video generation, as the subject in the reference image often differs from the subject in the reference video in terms of initial position, size, and shape. To address this, we propose the Leveraging Motion Prior (LMP) framework for zero-shot video generation. Our framework harnesses the powerful generative capabilities of pre-trained diffusion transformers to enable motion in the generated videos to reference user-provided motion videos in both text-to-video and image-to-video generation. To this end, we first introduce a foreground-background disentangle module to distinguish between moving subjects and backgrounds in the reference video, preventing interference in the target video generation. A reweighted motion transfer module is designed to allow the target video to reference the motion from the reference video. To avoid interference from the subject in the reference video, we propose an appearance separation module to suppress the appearance of the reference subject in the target video. We annotate the DAVIS dataset with detailed prompts for our experiments and design evaluation metrics to validate the effectiveness of our method. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in generation quality, prompt-video consistency, and control capability. Our homepage is available at https://vpx-ecnu.github.io/LMP-Website/
Related papers
- Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.<n>We translate high-level user requests into detailed, semi-dense motion prompts.<n>We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model [78.11258752076046]
MOFA-Video is an advanced controllable image animation method that generates video from the given image using various additional controllable signals.
We design several domain-aware motion field adapters to control the generated motions in the video generation pipeline.
After training, the MOFA-Adapters in different domains can also work together for more controllable video generation.
arXiv Detail & Related papers (2024-05-30T16:22:22Z) - Collaborative Video Diffusion: Consistent Multi-video Generation with Camera Control [70.17137528953953]
Collaborative video diffusion (CVD) is trained on top of a state-of-the-art camera-control module for video generation.
CVD generates multiple videos rendered from different camera trajectories with significantly better consistency than baselines.
arXiv Detail & Related papers (2024-05-27T17:58:01Z) - Motion-Zero: Zero-Shot Moving Object Control Framework for Diffusion-Based Video Generation [10.5019872575418]
We propose a novel zero-shot moving object trajectory control framework, Motion-Zero, to enable a bounding-box-trajectories-controlled text-to-video diffusion model.<n>Our method can be flexibly applied to various state-of-the-art video diffusion models without any training process.
arXiv Detail & Related papers (2024-01-18T17:22:37Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) is a novel one-shot tuning approach crafted to adapt temporal attention layers within video diffusion models.
Our approach introduces a novel motion distillation objective using residual vectors between consecutive frames as a motion reference.
We validate our method against state-of-the-art video generative models across diverse real-world motions and contexts.
arXiv Detail & Related papers (2023-12-01T06:50:11Z) - MoVideo: Motion-Aware Video Generation with Diffusion Models [97.03352319694795]
We propose a novel motion-aware generation (MoVideo) framework that takes motion into consideration from two aspects: video depth and optical flow.
MoVideo achieves state-of-the-art results in both text-to-video and image-to-video generation, showing promising prompt consistency, frame consistency and visual quality.
arXiv Detail & Related papers (2023-11-19T13:36:03Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Video is a controllable T2V diffusion model that can generate videos conditioned on text prompts and reference control maps like edge and depth maps.
We propose novel strategies to incorporate content prior and motion prior into the diffusion-based generation process.
Our framework generates higher-quality, more consistent videos compared to existing state-of-the-art methods in controllable text-to-video generation.
arXiv Detail & Related papers (2023-05-23T09:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.