論文の概要: Transfer Learning in Human Activity Recognition: A Survey
- arxiv url: http://arxiv.org/abs/2401.10185v1
- Date: Thu, 18 Jan 2024 18:12:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 15:35:29.555907
- Title: Transfer Learning in Human Activity Recognition: A Survey
- Title(参考訳): 人間活動認識における伝達学習 : 調査
- Authors: Sourish Gunesh Dhekane, Thomas Ploetz
- Abstract要約: センサベースのヒューマンアクティビティ認識(HAR)は、スマート環境、生活支援、フィットネス、ヘルスケアなどへの応用により、活発な研究領域となっている。
近年,ディープラーニングに基づくエンドツーエンドトレーニングにより,コンピュータビジョンや自然言語といった領域における最先端のパフォーマンスが向上している。
我々は、スマートホームとウェアラブルベースのHARのアプリケーション領域におけるこれらの伝達学習手法に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.13029741239874087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sensor-based human activity recognition (HAR) has been an active research
area, owing to its applications in smart environments, assisted living,
fitness, healthcare, etc. Recently, deep learning based end-to-end training has
resulted in state-of-the-art performance in domains such as computer vision and
natural language, where large amounts of annotated data are available. However,
large quantities of annotated data are not available for sensor-based HAR.
Moreover, the real-world settings on which the HAR is performed differ in terms
of sensor modalities, classification tasks, and target users. To address this
problem, transfer learning has been employed extensively. In this survey, we
focus on these transfer learning methods in the application domains of smart
home and wearables-based HAR. In particular, we provide a problem-solution
perspective by categorizing and presenting the works in terms of their
contributions and the challenges they address. We also present an updated view
of the state-of-the-art for both application domains. Based on our analysis of
205 papers, we highlight the gaps in the literature and provide a roadmap for
addressing them. This survey provides a reference to the HAR community, by
summarizing the existing works and providing a promising research agenda.
- Abstract(参考訳): センサベースのヒューマンアクティビティ認識(HAR)は、スマート環境、生活支援、フィットネス、ヘルスケアなどへの応用により、活発な研究領域となっている。
近年、ディープラーニングに基づくエンドツーエンドトレーニングにより、大量の注釈付きデータが利用できるコンピュータビジョンや自然言語などの分野における最先端のパフォーマンスが向上している。
しかし、センサーベースのHARでは、大量の注釈付きデータが利用できない。
さらに、HARが実行される現実世界の設定は、センサーのモダリティ、分類タスク、ターゲットユーザによって異なる。
この問題に対処するために、転送学習が広く採用されている。
本研究では、スマートホームとウェアラブルベースのHARのアプリケーション領域におけるこれらの伝達学習手法に焦点を当てた。
特に,本研究の成果と課題を分類し,提示することで,問題解決の視点を提供する。
また、両方のアプリケーションドメインに対する最先端のビューも更新します。
205論文の分析に基づいて、文献のギャップを強調し、それに対処するためのロードマップを提供する。
この調査は、既存の作業を要約し、有望な研究課題を提供することにより、HARコミュニティへの言及を提供する。
関連論文リスト
- A Comprehensive Methodological Survey of Human Activity Recognition Across Divers Data Modalities [2.916558661202724]
人間活動認識(HAR)システムは、人間の行動を理解し、それぞれの行動にラベルを割り当てることを目的としている。
HARは、RGB画像やビデオ、スケルトン、深度、赤外線、ポイントクラウド、イベントストリーム、オーディオ、アクセラレーション、レーダー信号など、さまざまなデータモダリティを利用することができる。
本稿は,2014年から2024年までのHARの最新の進歩に関する包括的調査である。
論文 参考訳(メタデータ) (2024-09-15T10:04:44Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
水中画像強調(UIE)はコンピュータビジョン研究において重要な課題である。
多数のUIEアルゴリズムが開発されているにもかかわらず、網羅的で体系的なレビューはいまだに欠落している。
論文 参考訳(メタデータ) (2024-05-30T04:46:40Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
ディープラーニングに基づくオブジェクトポーズ推定の最近の進歩について論じる。
また、複数の入力データモダリティ、出力ポーズの自由度、オブジェクト特性、下流タスクについても調査した。
論文 参考訳(メタデータ) (2024-05-13T14:44:22Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Cross-Domain HAR: Few Shot Transfer Learning for Human Activity
Recognition [0.2944538605197902]
本稿では,HARデータセットを有効な転送学習に利用するための経済的なアプローチを提案する。
本稿では,教師が学習する自己学習パラダイムに則って,新たな伝達学習フレームワークであるクロスドメインHARを紹介する。
本手法の有効性を,撮影活動認識のシナリオで実証する。
論文 参考訳(メタデータ) (2023-10-22T19:13:25Z) - Overview of Human Activity Recognition Using Sensor Data [4.941233729756897]
ヒューマンアクティビティ認識(HAR)は、ホームや職場の自動化、セキュリティ、監視、医療など、さまざまな用途で使用されている。
センサベースHARの概要を概説し、HARに依存したいくつかの重要な応用について論じ、HARで使われている最も一般的な機械学習手法を強調した。
HARの堅牢性をさらに向上するために、HARのいくつかの課題について検討する。
論文 参考訳(メタデータ) (2023-09-12T10:37:42Z) - Lifelong Adaptive Machine Learning for Sensor-based Human Activity
Recognition Using Prototypical Networks [0.0]
連続学習は、生涯学習としても知られ、機械学習分野への関心が高まりつつある研究トピックである。
我々は,連続機械学習の分野における最近の進歩を基盤に,プロトタイプネットワーク(LPPNet-HAR)を用いた生涯適応型学習フレームワークを設計する。
LAPNet-HARは、タスクフリーなデータインクリメンタルな方法でセンサベースのデータストリームを処理する。
論文 参考訳(メタデータ) (2022-03-11T00:57:29Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - Continual Learning in Sensor-based Human Activity Recognition: an
Empirical Benchmark Analysis [4.686889458553123]
センサーベースのヒューマンアクティビティ認識(HAR)は、スマートホーム、パーソナルヘルスケア、都市計画における多くの現実世界のアプリケーションのための重要なイネーブラーです。
HARシステムは、ゼロから再設計することなく、長期間にわたって新しいアクティビティを自律的に学習できますか?
この問題は連続学習と呼ばれ、コンピュータビジョンの分野で特に人気があります。
論文 参考訳(メタデータ) (2021-04-19T15:38:22Z) - Reasoning over Vision and Language: Exploring the Benefits of
Supplemental Knowledge [59.87823082513752]
本稿では,汎用知識基盤(KB)から視覚言語変換器への知識の注入について検討する。
我々は複数のタスクやベンチマークに対する様々なkbの関連性を実証的に研究する。
この技術はモデルに依存しず、最小限の計算オーバーヘッドで任意の視覚言語変換器の適用可能性を拡張することができる。
論文 参考訳(メタデータ) (2021-01-15T08:37:55Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
本稿では,センサを用いた人間の活動認識のための最先端のディープラーニング手法について調査する。
まず、官能データのマルチモーダリティを導入し、公開データセットに情報を提供する。
次に、課題によって深層メソッドを構築するための新しい分類法を提案する。
論文 参考訳(メタデータ) (2020-01-21T09:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。