論文の概要: A Comprehensive Methodological Survey of Human Activity Recognition Across Divers Data Modalities
- arxiv url: http://arxiv.org/abs/2409.09678v1
- Date: Sun, 15 Sep 2024 10:04:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 19:48:24.035013
- Title: A Comprehensive Methodological Survey of Human Activity Recognition Across Divers Data Modalities
- Title(参考訳): ダイバーデータモダリティ間の人間活動認識に関する包括的方法論調査
- Authors: Jungpil Shin, Najmul Hassan, Abu Saleh Musa Miah1, Satoshi Nishimura,
- Abstract要約: 人間活動認識(HAR)システムは、人間の行動を理解し、それぞれの行動にラベルを割り当てることを目的としている。
HARは、RGB画像やビデオ、スケルトン、深度、赤外線、ポイントクラウド、イベントストリーム、オーディオ、アクセラレーション、レーダー信号など、さまざまなデータモダリティを利用することができる。
本稿は,2014年から2024年までのHARの最新の進歩に関する包括的調査である。
- 参考スコア(独自算出の注目度): 2.916558661202724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human Activity Recognition (HAR) systems aim to understand human behaviour and assign a label to each action, attracting significant attention in computer vision due to their wide range of applications. HAR can leverage various data modalities, such as RGB images and video, skeleton, depth, infrared, point cloud, event stream, audio, acceleration, and radar signals. Each modality provides unique and complementary information suited to different application scenarios. Consequently, numerous studies have investigated diverse approaches for HAR using these modalities. This paper presents a comprehensive survey of the latest advancements in HAR from 2014 to 2024, focusing on machine learning (ML) and deep learning (DL) approaches categorized by input data modalities. We review both single-modality and multi-modality techniques, highlighting fusion-based and co-learning frameworks. Additionally, we cover advancements in hand-crafted action features, methods for recognizing human-object interactions, and activity detection. Our survey includes a detailed dataset description for each modality and a summary of the latest HAR systems, offering comparative results on benchmark datasets. Finally, we provide insightful observations and propose effective future research directions in HAR.
- Abstract(参考訳): 人間活動認識(HAR)システムは、人間の行動を理解し、それぞれの行動にラベルを割り当てることを目的としており、幅広い応用のためにコンピュータビジョンに大きな注目を集めている。
HARは、RGB画像やビデオ、スケルトン、深度、赤外線、ポイントクラウド、イベントストリーム、オーディオ、アクセラレーション、レーダー信号など、さまざまなデータモダリティを利用することができる。
それぞれのモダリティは、異なるアプリケーションシナリオに適したユニークで補完的な情報を提供します。
その結果、HARに対する様々なアプローチをこれらのモダリティを用いて研究してきた。
本稿では,2014年から2024年にかけてのHARの最新の進歩について,入力データモダリティによって分類された機械学習(ML)とディープラーニング(DL)アプローチに着目した包括的調査を行う。
我々は、単一のモダリティとマルチモダリティの両方のテクニックをレビューし、融合ベースのフレームワークとコラーニングフレームワークを強調した。
さらに,手作りの動作特徴の進歩,人間と物体の相互作用を認識する方法,行動検出について述べる。
我々の調査には、各モードに関する詳細なデータセット記述と、最新のHARシステムの概要が含まれており、ベンチマークデータセットの比較結果を提供している。
最後に、洞察に富んだ観察結果を提供し、HARにおける効果的な今後の研究方向を提案する。
関連論文リスト
- A Methodological and Structural Review of Hand Gesture Recognition Across Diverse Data Modalities [1.6144710323800757]
ハンドジェスチャ認識(HGR)システムは、自然、効率的、そして認証された人間とコンピュータの相互作用を促進する。
大幅な進歩にもかかわらず、手の動きを自動的かつ正確に識別することはコンピュータビジョンにおいて大きな課題である。
本稿では,2014年から2024年までのHGR技術とデータモダリティを概観し,センサ技術とコンピュータビジョンの進歩を探求する。
論文 参考訳(メタデータ) (2024-08-10T04:40:01Z) - A Survey on Multimodal Wearable Sensor-based Human Action Recognition [15.054052500762559]
WSHAR(Wearable Sensor-based Human Activity Recognition)は、高齢者の日常生活を支援するための有望な補助技術である。
WSHARの最近の調査は、ディープラーニングアプローチのみに焦点を絞ったものや、単一センサーのモダリティに焦点が当てられている。
本研究では,新参者や研究者を対象に,マルチモーダル学習をWSHARドメインに活用するための総合的な調査を行う。
論文 参考訳(メタデータ) (2024-04-14T18:43:16Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
様々なソースからのデータを組み込んだマルチモーダル機械学習が,ますます普及している研究分野となっている。
我々は、視覚、音声、テキスト、動きなど、各データフォーマットの共通点と特異点を分析する。
本稿では,表現学習と下流アプリケーションレベルの両方から,マルチモーダル学習に関する既存の文献を考察する。
論文 参考訳(メタデータ) (2022-10-05T13:14:57Z) - Contrastive Learning with Cross-Modal Knowledge Mining for Multimodal
Human Activity Recognition [1.869225486385596]
複数のモダリティを活用することによって、より良い認識がもたらされるという仮説を探求する。
我々は、近年、人間活動認識の課題に対して、多くの対照的な自己監督的アプローチを拡張している。
マルチモーダルな自己教師型学習を実現するための,フレキシブルで汎用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-20T10:39:16Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
現実世界のアプリケーションで特定のアクション理解の需要が高まっているため、きめ細かいアクション認識が注目を集めている。
そこで本研究では,各クラスに付与されるサンプル数だけを用いて,新規なきめ細かい動作を認識することを目的とした,数発のきめ細かな動作認識問題を提案する。
粒度の粗い動作では進展があったが、既存の数発の認識手法では、粒度の細かい動作を扱う2つの問題に遭遇する。
論文 参考訳(メタデータ) (2021-08-15T02:21:01Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - Human Action Recognition from Various Data Modalities: A Review [37.07491839026713]
人間の行動認識(HAR)は、人間の行動を理解し、各行動にラベルを割り当てることを目指しています。
HARには幅広い用途があり、コンピュータビジョンの分野で注目を集めています。
本稿では,入力データモダリティ型に基づくHARの深層学習手法の最近の進歩について考察する。
論文 参考訳(メタデータ) (2020-12-22T07:37:43Z) - Recent Progress in Appearance-based Action Recognition [73.6405863243707]
アクション認識は、ビデオ内の様々な人間の行動を特定するタスクである。
最近の外見に基づく手法は、正確な行動認識に向けて有望な進歩を遂げている。
論文 参考訳(メタデータ) (2020-11-25T10:18:12Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z) - Learning-to-Learn Personalised Human Activity Recognition Models [1.5087842661221904]
本稿では,HARのための個人化されたHARモデルを学習するためのメタラーニング手法を提案する。
既存のメタラーニングアルゴリズムにインスパイアされたパーソナライズされたMAMLとパーソナライズされた関係ネットワークの2つのアルゴリズムを紹介する。
比較研究では、最先端のDeep Learningアルゴリズムと、複数のHARドメインにおけるFew-shot Meta-Learningアルゴリズムに対して、大幅なパフォーマンス改善が示されている。
論文 参考訳(メタデータ) (2020-06-12T21:11:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。