論文の概要: Self-supervised New Activity Detection in Sensor-based Smart Environments
- arxiv url: http://arxiv.org/abs/2401.10288v2
- Date: Thu, 20 Mar 2025 12:01:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:31:20.252522
- Title: Self-supervised New Activity Detection in Sensor-based Smart Environments
- Title(参考訳): センサ型スマート環境における自己教師型新しいアクティビティ検出
- Authors: Hyunju Kim, Dongman Lee,
- Abstract要約: 我々は、新しいアクティビティ検出のための多様なデータ拡張を伴うコントラスト学習を利用するモデルであるCLANを紹介する。
CLANは時間領域と周波数領域の両方を組み込んでおり、多面的識別表現の学習を可能にしている。
CLANは、最高のパフォーマンスのベースラインモデルと比較して、AUROCの9.24%の改善を実現している。
- 参考スコア(独自算出の注目度): 2.5486448837945765
- License:
- Abstract: With the rapid advancement of ubiquitous computing technology, human activity analysis based on time series data from a diverse range of sensors enables the delivery of more intelligent services. Despite the importance of exploring new activities in real-world scenarios, existing human activity recognition studies generally rely on predefined known activities and often overlook detecting new patterns (novelties) that have not been previously observed during training. Novelty detection in human activities becomes even more challenging due to (1) diversity of patterns within the same known activity, (2) shared patterns between known and new activities, and (3) differences in sensor properties of each activity dataset. We introduce CLAN, a two-tower model that leverages Contrastive Learning with diverse data Augmentation for New activity detection in sensor-based environments. CLAN simultaneously and explicitly utilizes multiple types of strongly shifted data as negative samples in contrastive learning, effectively learning invariant representations that adapt to various pattern variations within the same activity. To enhance the ability to distinguish between known and new activities that share common features, CLAN incorporates both time and frequency domains, enabling the learning of multi-faceted discriminative representations. Additionally, we design an automatic selection mechanism of data augmentation methods tailored to each dataset's properties, generating appropriate positive and negative pairs for contrastive learning. Comprehensive experiments on real-world datasets show that CLAN achieves a 9.24% improvement in AUROC compared to the best-performing baseline model.
- Abstract(参考訳): ユビキタスコンピューティング技術の急速な進歩により、多様なセンサーからの時系列データに基づく人間の活動分析により、よりインテリジェントなサービスの提供が可能になる。
現実のシナリオにおける新しい活動の探索の重要性にもかかわらず、既存の人間の活動認識研究は一般的に、事前に定義された既知の活動に依存しており、トレーニング中にこれまで観察されなかった新しいパターン(発見)の検出を見落としていることが多い。
1)同一活動におけるパターンの多様性,(2)既知の活動と新規活動の共有パターン,(3)各活動データセットのセンサ特性の差異により,人間の活動の新規性の検出はさらに困難になる。
センサベース環境における新たなアクティビティ検出のための多種多様なデータ拡張によるコントラスト学習を利用する2towerモデルであるCLANを紹介する。
対照的な学習において、CLANは複数のタイプの強いシフトしたデータを負のサンプルとして同時に明示的に利用し、同じ活動における様々なパターンの変化に適応する不変表現を効果的に学習する。
共通の特徴を共有する既知のアクティビティと新しいアクティビティを区別する能力を高めるため、CLANは時間ドメインと周波数ドメインの両方を導入し、多面的識別表現の学習を可能にした。
さらに、各データセットの特性に合わせてデータ拡張手法の自動選択機構を設計し、コントラスト学習のための適切な正と負のペアを生成する。
実世界のデータセットに関する総合的な実験により、CLANは最高性能のベースラインモデルと比較して、AUROCの9.24%の改善を達成している。
関連論文リスト
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - DisenHCN: Disentangled Hypergraph Convolutional Networks for
Spatiotemporal Activity Prediction [53.76601630407521]
本稿では,既存のソリューションのギャップを埋めるために,DistenHCNと呼ばれるハイパーグラフネットワークモデルを提案する。
特に,ユーザの好みと時間的活動の複雑なマッチングをヘテロジニアスなハイパーグラフにまとめる。
次に、ユーザ表現を異なる側面(位置認識、時間認識、活動認識)に切り離し、構築したハイパーグラフ上に対応するアスペクトの特徴を集約する。
論文 参考訳(メタデータ) (2022-08-14T06:51:54Z) - UMSNet: An Universal Multi-sensor Network for Human Activity Recognition [10.952666953066542]
本稿では,人間行動認識のためのユニバーサルマルチセンサネットワーク(UMSNet)を提案する。
特に,新しい軽量センサ残差ブロック(LSRブロック)を提案する。
我々のフレームワークは明確な構造を持ち、様々な種類のマルチモーダル時系列分類タスクに直接適用することができる。
論文 参考訳(メタデータ) (2022-05-24T03:29:54Z) - A Novel Skeleton-Based Human Activity Discovery Technique Using Particle
Swarm Optimization with Gaussian Mutation [0.0]
人間の活動発見は、各活動の定義に関する事前情報なしで、人間が行う活動を区別することを目的としている。
本稿では,3次元骨格配列における人間の活動探索を行うために,新しい非教師的手法を提案する。
3つのデータセットについて実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2022-01-14T06:28:38Z) - Generative Partial Visual-Tactile Fused Object Clustering [81.17645983141773]
オブジェクトクラスタリングのためのGenerative Partial Visual-Tactile Fused(GPVTF)フレームワークを提案する。
条件付きクロスモーダルクラスタリング生成逆ネットワークを開発し、一方のモダリティ条件を他方のモダリティ上で合成する。
最後に、擬似ラベルに基づく2つのKL分割損失を用いて、対応するモダリティ固有エンコーダを更新する。
論文 参考訳(メタデータ) (2020-12-28T02:37:03Z) - A Tree-structure Convolutional Neural Network for Temporal Features
Exaction on Sensor-based Multi-resident Activity Recognition [4.619245607612873]
マルチレジデント活動認識(TSC-MRAR)のためのエンドツーエンド木構造畳み込みニューラルネットワークフレームワークを提案する。
まず、各サンプルをイベントとして扱い、スライディングウインドウに過去のセンサの読み取りを埋め込んだ現在のイベントを得る。
そして、時間的特徴を自動的に生成するために、木構造ネットワークを設計し、近くの読み物の時間的依存を導出する。
論文 参考訳(メタデータ) (2020-11-05T14:31:00Z) - Sequential Weakly Labeled Multi-Activity Localization and Recognition on
Wearable Sensors using Recurrent Attention Networks [13.64024154785943]
本稿では,逐次的にラベル付けされたマルチアクティビティ認識と位置情報タスクを処理するために,RAN(Recurrent attention network)を提案する。
我々のRANモデルは、粗粒度シーケンシャルな弱いラベルからマルチアクティビティータイプを同時に推測することができる。
手動ラベリングの負担を大幅に軽減する。
論文 参考訳(メタデータ) (2020-04-13T04:57:09Z) - Human Activity Recognition from Wearable Sensor Data Using
Self-Attention [2.9023633922848586]
本稿では,身体のセンサデータから行動認識のための自己認識型ニューラルネットワークモデルを提案する。
一般に公開されている4つのHARデータセット、PAMAP2、Opportunity、Skoda、USC-HADについて実験を行った。
ベンチマークテスト対象とLeave-out-subject評価の両方において,最近の最先端モデルよりも高い性能向上を実現している。
論文 参考訳(メタデータ) (2020-03-17T14:16:57Z) - ZSTAD: Zero-Shot Temporal Activity Detection [107.63759089583382]
本研究では,ゼロショット時間的活動検出(ZSTAD)と呼ばれる新たなタスク設定を提案する。
このソリューションのアーキテクチャとして,R-C3Dに基づくエンドツーエンドのディープネットワークを設計する。
THUMOS14とCharadesデータセットの両方の実験は、目に見えない活動を検出するという点で有望なパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-03-12T02:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。