On the Readiness of Scientific Data for a Fair and Transparent Use in
Machine Learning
- URL: http://arxiv.org/abs/2401.10304v1
- Date: Thu, 18 Jan 2024 12:11:27 GMT
- Title: On the Readiness of Scientific Data for a Fair and Transparent Use in
Machine Learning
- Authors: Joan Giner-Miguelez, Abel G\'omez, Jordi Cabot
- Abstract summary: We analyze how scientific data documentation meets the needs of the machine learning community and regulatory bodies for its use in ML technologies.
We examine a sample of 4041 data papers of different domains, assessing their completeness and coverage of the requested dimensions.
We propose a set of recommendation guidelines for data creators and scientific data publishers to increase their data's preparedness for its transparent and fairer use in ML technologies.
- Score: 1.961305559606562
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: To ensure the fairness and trustworthiness of machine learning (ML) systems,
recent legislative initiatives and relevant research in the ML community have
pointed out the need to document the data used to train ML models. Besides,
data-sharing practices in many scientific domains have evolved in recent years
for reproducibility purposes. In this sense, the adoption of these practices by
academic institutions has encouraged researchers to publish their data and
technical documentation in peer-reviewed publications such as data papers. In
this study, we analyze how this scientific data documentation meets the needs
of the ML community and regulatory bodies for its use in ML technologies. We
examine a sample of 4041 data papers of different domains, assessing their
completeness and coverage of the requested dimensions, and trends in recent
years, putting special emphasis on the most and least documented dimensions. As
a result, we propose a set of recommendation guidelines for data creators and
scientific data publishers to increase their data's preparedness for its
transparent and fairer use in ML technologies.
Related papers
- The State of Data Curation at NeurIPS: An Assessment of Dataset Development Practices in the Datasets and Benchmarks Track [1.5993707490601146]
This work provides an analysis of dataset development practices at NeurIPS through the lens of data curation.
We present an evaluation framework for dataset documentation, consisting of a rubric and toolkit.
Results indicate greater need for documentation about environmental footprint, ethical considerations, and data management.
arXiv Detail & Related papers (2024-10-29T19:07:50Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Deriva-ML: A Continuous FAIRness Approach to Reproducible Machine Learning Models [1.204452887718077]
We show how data management tools can significantly improve the quality of data that is used for machine learning (ML) applications.
We propose an architecture and implementation of such tools and demonstrate through two use cases how they can be used to improve ML-based eScience investigations.
arXiv Detail & Related papers (2024-06-27T04:42:29Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs)
We make the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs.
We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.
arXiv Detail & Related papers (2024-06-20T16:34:07Z) - SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature [80.49349719239584]
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks.
SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields.
arXiv Detail & Related papers (2024-06-10T21:22:08Z) - MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows [58.56005277371235]
We introduce MASSW, a comprehensive text dataset on Multi-Aspect Summarization of ScientificAspects.
MASSW includes more than 152,000 peer-reviewed publications from 17 leading computer science conferences spanning the past 50 years.
We demonstrate the utility of MASSW through multiple novel machine-learning tasks that can be benchmarked using this new dataset.
arXiv Detail & Related papers (2024-06-10T15:19:09Z) - Using Large Language Models to Enrich the Documentation of Datasets for Machine Learning [1.8270184406083445]
We explore using large language models (LLM) and prompting strategies to automatically extract dimensions from documents.
Our approach could aid data publishers and practitioners in creating machine-readable documentation.
We have released an open-source tool implementing our approach and a replication package, including the experiments' code and results.
arXiv Detail & Related papers (2024-04-04T10:09:28Z) - A Survey on Data Selection for Language Models [148.300726396877]
Data selection methods aim to determine which data points to include in a training dataset.
Deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive.
Few organizations have the resources for extensive data selection research.
arXiv Detail & Related papers (2024-02-26T18:54:35Z) - The Open Review-Based (ORB) dataset: Towards Automatic Assessment of
Scientific Papers and Experiment Proposals in High-Energy Physics [0.0]
We introduce the new comprehensive Open Review-Based dataset (ORB)
It includes a curated list of more than 36,000 scientific papers with their more than 89,000 reviews and final decisions.
This paper presents our data architecture and an overview of the collected data along with relevant statistics.
arXiv Detail & Related papers (2023-11-29T20:52:02Z) - Large Language Models as Data Preprocessors [9.99065004972981]
Large Language Models (LLMs) have marked a significant advancement in artificial intelligence.
This study explores their potential in data preprocessing, a critical stage in data mining and analytics applications.
We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques.
arXiv Detail & Related papers (2023-08-30T23:28:43Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.