MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows
- URL: http://arxiv.org/abs/2406.06357v1
- Date: Mon, 10 Jun 2024 15:19:09 GMT
- Title: MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows
- Authors: Xingjian Zhang, Yutong Xie, Jin Huang, Jinge Ma, Zhaoying Pan, Qijia Liu, Ziyang Xiong, Tolga Ergen, Dongsub Shim, Honglak Lee, Qiaozhu Mei,
- Abstract summary: We introduce MASSW, a comprehensive text dataset on Multi-Aspect Summarization of ScientificAspects.
MASSW includes more than 152,000 peer-reviewed publications from 17 leading computer science conferences spanning the past 50 years.
We demonstrate the utility of MASSW through multiple novel machine-learning tasks that can be benchmarked using this new dataset.
- Score: 58.56005277371235
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Scientific innovation relies on detailed workflows, which include critical steps such as analyzing literature, generating ideas, validating these ideas, interpreting results, and inspiring follow-up research. However, scientific publications that document these workflows are extensive and unstructured. This makes it difficult for both human researchers and AI systems to effectively navigate and explore the space of scientific innovation. To address this issue, we introduce MASSW, a comprehensive text dataset on Multi-Aspect Summarization of Scientific Workflows. MASSW includes more than 152,000 peer-reviewed publications from 17 leading computer science conferences spanning the past 50 years. Using Large Language Models (LLMs), we automatically extract five core aspects from these publications -- context, key idea, method, outcome, and projected impact -- which correspond to five key steps in the research workflow. These structured summaries facilitate a variety of downstream tasks and analyses. The quality of the LLM-extracted summaries is validated by comparing them with human annotations. We demonstrate the utility of MASSW through multiple novel machine-learning tasks that can be benchmarked using this new dataset, which make various types of predictions and recommendations along the scientific workflow. MASSW holds significant potential for researchers to create and benchmark new AI methods for optimizing scientific workflows and fostering scientific innovation in the field. Our dataset is openly available at \url{https://github.com/xingjian-zhang/massw}.
Related papers
- Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
Large language models (LLMs) have brought substantial advancements in text generation, but their potential for enhancing classification tasks remains underexplored.
We propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches.
We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task.
arXiv Detail & Related papers (2024-10-02T20:48:28Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Human-artificial intelligence teaming for scientific information extraction from data-driven additive manufacturing research using large language models [3.0061386772253784]
Data-driven research in Additive Manufacturing (AM) has gained significant success in recent years.
This has led to a plethora of scientific literature to emerge.
It requires substantial effort and time to extract scientific information from these works.
We propose a framework that enables collaboration between AM and AI experts to continuously extract scientific information from data-driven AM literature.
arXiv Detail & Related papers (2024-07-26T15:43:52Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
Large language models (LLMs) have revolutionized the way text and other modalities of data are handled.
We aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs.
arXiv Detail & Related papers (2024-06-16T08:03:24Z) - SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature [80.49349719239584]
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks.
SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields.
arXiv Detail & Related papers (2024-06-10T21:22:08Z) - DataDreamer: A Tool for Synthetic Data Generation and Reproducible LLM Workflows [72.40917624485822]
We introduce DataDreamer, an open source Python library that allows researchers to implement powerful large language models.
DataDreamer also helps researchers adhere to best practices that we propose to encourage open science.
arXiv Detail & Related papers (2024-02-16T00:10:26Z) - SciOps: Achieving Productivity and Reliability in Data-Intensive Research [0.8414742293641504]
Scientists are increasingly leveraging advances in instruments, automation, and collaborative tools to scale up their experiments and research goals.
Various scientific disciplines, including neuroscience, have adopted key technologies to enhance collaboration, inspiration and automation.
We introduce a five-level Capability Maturity Model describing the principles of rigorous scientific operations.
arXiv Detail & Related papers (2023-12-29T21:37:22Z) - Method and Dataset Entity Mining in Scientific Literature: A CNN +
Bi-LSTM Model with Self-attention [21.93889297841459]
We propose a novel entity recognition model, called MDER, which is able to effectively extract the method and dataset entities from scientific papers.
We evaluate the proposed model on datasets constructed from the published papers of four research areas in computer science, i.e., NLP, CV, Data Mining and AI.
arXiv Detail & Related papers (2020-10-26T13:38:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.