Named Entity Recognition Under Domain Shift via Metric Learning for Life Sciences
- URL: http://arxiv.org/abs/2401.10472v2
- Date: Mon, 1 Apr 2024 03:06:40 GMT
- Title: Named Entity Recognition Under Domain Shift via Metric Learning for Life Sciences
- Authors: Hongyi Liu, Qingyun Wang, Payam Karisani, Heng Ji,
- Abstract summary: We investigate the applicability of transfer learning for enhancing a named entity recognition model.
Our model consists of two stages: 1) entity grouping in the source domain, which incorporates knowledge from annotated events to establish relations between entities, and 2) entity discrimination in the target domain, which relies on pseudo labeling and contrastive learning to enhance discrimination between the entities in the two domains.
- Score: 55.185456382328674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Named entity recognition is a key component of Information Extraction (IE), particularly in scientific domains such as biomedicine and chemistry, where large language models (LLMs), e.g., ChatGPT, fall short. We investigate the applicability of transfer learning for enhancing a named entity recognition model trained in the biomedical domain (the source domain) to be used in the chemical domain (the target domain). A common practice for training such a model in a few-shot learning setting is to pretrain the model on the labeled source data, and then, to finetune it on a hand-full of labeled target examples. In our experiments, we observed that such a model is prone to mislabeling the source entities, which can often appear in the text, as the target entities. To alleviate this problem, we propose a model to transfer the knowledge from the source domain to the target domain, but, at the same time, to project the source entities and target entities into separate regions of the feature space. This diminishes the risk of mislabeling the source entities as the target entities. Our model consists of two stages: 1) entity grouping in the source domain, which incorporates knowledge from annotated events to establish relations between entities, and 2) entity discrimination in the target domain, which relies on pseudo labeling and contrastive learning to enhance discrimination between the entities in the two domains. We conduct our extensive experiments across three source and three target datasets, demonstrating that our method outperforms the baselines by up to 5% absolute value.
Related papers
- Pulling Target to Source: A New Perspective on Domain Adaptive Semantic Segmentation [80.1412989006262]
Domain adaptive semantic segmentation aims to transfer knowledge from a labeled source domain to an unlabeled target domain.
We propose T2S-DA, which we interpret as a form of pulling Target to Source for Domain Adaptation.
arXiv Detail & Related papers (2023-05-23T07:09:09Z) - Meta-causal Learning for Single Domain Generalization [102.53303707563612]
Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains)
Existing methods focus on expanding the distribution of the training domain to cover the target domains, but without estimating the domain shift between the source and target domains.
We propose a new learning paradigm, namely simulate-analyze-reduce, which first simulates the domain shift by building an auxiliary domain as the target domain, then learns to analyze the causes of domain shift, and finally learns to reduce the domain shift for model adaptation.
arXiv Detail & Related papers (2023-04-07T15:46:38Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources [68.31273535702256]
We propose a novel instance-level MDA framework, named curriculum cycle-consistent generative adversarial network (C-CycleGAN)
C-CycleGAN consists of three components: (1) pre-trained text encoder which encodes textual input from different domains into a continuous representation space, (2) intermediate domain generator with curriculum instance-level adaptation which bridges the gap across source and target domains, and (3) task classifier trained on the intermediate domain for final sentiment classification.
We conduct extensive experiments on three benchmark datasets and achieve substantial gains over state-of-the-art DA approaches.
arXiv Detail & Related papers (2020-11-17T14:50:55Z) - Learning causal representations for robust domain adaptation [31.261956776418618]
In many real-world applications, target domain data may not always be available.
In this paper, we study the cases where at the training phase the target domain data is unavailable.
We propose a novel Causal AutoEncoder (CAE), which integrates deep autoencoder and causal structure learning into a unified model.
arXiv Detail & Related papers (2020-11-12T11:24:03Z) - Physically-Constrained Transfer Learning through Shared Abundance Space
for Hyperspectral Image Classification [14.840925517957258]
We propose a new transfer learning scheme to bridge the gap between the source and target domains.
The proposed method is referred to as physically-constrained transfer learning through shared abundance space.
arXiv Detail & Related papers (2020-08-19T17:41:37Z) - Domain Adaption for Knowledge Tracing [65.86619804954283]
We propose a novel adaptable framework, namely knowledge tracing (AKT) to address the DAKT problem.
For the first aspect, we incorporate the educational characteristics (e.g., slip, guess, question texts) based on the deep knowledge tracing (DKT) to obtain a good performed knowledge tracing model.
For the second aspect, we propose and adopt three domain adaptation processes. First, we pre-train an auto-encoder to select useful source instances for target model training.
arXiv Detail & Related papers (2020-01-14T15:04:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.