Designing Graph Convolutional Neural Networks for Discrete Choice with Network Effects
- URL: http://arxiv.org/abs/2503.09786v1
- Date: Wed, 12 Mar 2025 19:38:47 GMT
- Title: Designing Graph Convolutional Neural Networks for Discrete Choice with Network Effects
- Authors: Daniel F. Villarraga, Ricardo A. Daziano,
- Abstract summary: We propose a novel graph convolutional neural network architecture to model network effects in discrete choices.<n>Our architecture achieves higher predictive performance than standard discrete choice models while retaining the interpretability necessary for inference.<n>We compare our architecture to those derived from traditional discrete choice and general-purpose deep learning models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel model architecture that incorporates network effects into discrete choice problems, achieving higher predictive performance than standard discrete choice models while offering greater interpretability than general-purpose flexible model classes. Econometric discrete choice models aid in studying individual decision-making, where agents select the option with the highest reward from a discrete set of alternatives. Intuitively, the utility an individual derives from a particular choice depends on their personal preferences and characteristics, the attributes of the alternative, and the value their peers assign to that alternative or their previous choices. However, most applications ignore peer influence, and models that do consider peer or network effects often lack the flexibility and predictive performance of recently developed approaches to discrete choice, such as deep learning. We propose a novel graph convolutional neural network architecture to model network effects in discrete choices, achieving higher predictive performance than standard discrete choice models while retaining the interpretability necessary for inference--a quality often lacking in general-purpose deep learning architectures. We evaluate our architecture using revealed commuting choice data, extended with travel times and trip costs for each travel mode for work-related trips in New York City, as well as 2016 U.S. election data aggregated by county, to test its performance on datasets with highly imbalanced classes. Given the interpretability of our models, we can estimate relevant economic metrics, such as the value of travel time savings in New York City. Finally, we compare the predictive performance and behavioral insights from our architecture to those derived from traditional discrete choice and general-purpose deep learning models.
Related papers
- Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
A prevalent research line, known as online batch selection, explores selecting informative subsets during the training process.
vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner.
We propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples.
arXiv Detail & Related papers (2024-06-07T12:12:20Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
We propose a two-phase (coarse-recall and fine-selection) model selection framework.
It aims to enhance the efficiency of selecting a robust model by leveraging the models' training performances on benchmark datasets.
It has been demonstrated that the proposed methodology facilitates the selection of a high-performing model at a rate about 3x times faster than conventional baseline methods.
arXiv Detail & Related papers (2024-03-28T14:44:44Z) - IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight [4.010646933005848]
IGANN Sparse is a novel machine learning model from the family of generalized additive models.
It promotes sparsity through a non-linear feature selection process during training.
This ensures interpretability through improved model sparsity without sacrificing predictive performance.
arXiv Detail & Related papers (2024-03-17T22:44:36Z) - Budgeted Online Model Selection and Fine-Tuning via Federated Learning [26.823435733330705]
Online model selection involves selecting a model from a set of candidate models 'on the fly' to perform prediction on a stream of data.
The choice of candidate models henceforth has a crucial impact on the performance.
The present paper proposes an online federated model selection framework where a group of learners (clients) interacts with a server with sufficient memory.
Using the proposed algorithm, clients and the server collaborate to fine-tune models to adapt them to a non-stationary environment.
arXiv Detail & Related papers (2024-01-19T04:02:49Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - Deep Learning for Choice Modeling [5.173001988341294]
We develop deep learning-based choice models under two settings of choice modeling: feature-free and feature-based.
Our model captures both the intrinsic utility for each candidate choice and the effect that the assortment has on the choice probability.
arXiv Detail & Related papers (2022-08-19T13:10:17Z) - Graph-Based Methods for Discrete Choice [27.874979682322376]
We use graph learning to study choice in networked contexts.
We show that incorporating social network structure can improve the predictions of the standard econometric choice model.
arXiv Detail & Related papers (2022-05-23T14:51:23Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.