Scaling Relations of Spectrum Form Factor and Krylov Complexity at Finite Temperature
- URL: http://arxiv.org/abs/2401.10499v2
- Date: Wed, 18 Sep 2024 09:20:35 GMT
- Title: Scaling Relations of Spectrum Form Factor and Krylov Complexity at Finite Temperature
- Authors: Chengming Tan, Zhiyang Wei, Ren Zhang,
- Abstract summary: We extend the analysis to include the finite temperature effects on the Krylov complexity and SFF.
Our work deepens the understanding of the finite temperature effects on Krylov complexity, SFF, and the connection between ergodicity and operator growth.
- Score: 2.25304964649011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the study of quantum chaos diagnostics, considerable attention has been attributed to the Krylov complexity and spectrum form factor (SFF) for systems at infinite temperature. These investigations have unveiled universal properties of quantum chaotic systems. By extending the analysis to include the finite temperature effects on the Krylov complexity and SFF, we demonstrate that the Lanczos coefficients $b_n$, which are associated with the Wightman inner product, display consistency with the universal hypothesis presented in PRX 9, 041017 (2019). This result contrasts with the behavior of Lanczos coefficients associated with the standard inner product. Our results indicate that the slope $\alpha$ of the $b_n$ is bounded by $\pi k_BT$, where $k_B$ is the Boltzmann constant and $T$ the temperature. We also investigate the SFF, which characterizes the two-point correlation of the spectrum and encapsulates an indicator of ergodicity denoted by $g$ in chaotic systems. Our analysis demonstrates that as the temperature decreases, the value of $g$ decreases as well. Considering that $\alpha$ also represents the operator growth rate, we establish a quantitative relationship between ergodicity indicator and Lanczos coefficients slope. To support our findings, we provide evidence using the Gaussian orthogonal ensemble and a random spin model. Our work deepens the understanding of the finite temperature effects on Krylov complexity, SFF, and the connection between ergodicity and operator growth.
Related papers
- Krylov complexity of fermion chain in double-scaled SYK and power spectrum perspective [0.0]
We investigate Krylov complexity of the fermion chain operator which consists of multiple Majorana fermions in the double-scaled SYK (DSSYK) model with finite temperature.
Using the fact that Krylov complexity is computable from two-point functions, the analysis is performed in the limit where the two-point function becomes simple.
We confirm the exponential growth of Krylov complexity in the very low temperature regime.
arXiv Detail & Related papers (2024-07-18T08:47:05Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - $N$ Scaling of Large-Sample Collective Decay in Inhomogeneous Ensembles [44.99833362998488]
We experimentally study collective decay of an extended disordered ensemble of $N$ atoms inside a hollow-core fiber.
We observe up to $300$-fold enhanced decay rates, strong optical bursts and a coherent ringing.
arXiv Detail & Related papers (2023-07-21T14:43:29Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Full counting statistics of interacting lattice gases after an
expansion: The role of the condensate depletion in the many-body coherence [55.41644538483948]
We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons.
FCS reveals the many-body coherence from which we characterize iconic states of interacting lattice bosons.
arXiv Detail & Related papers (2022-07-28T13:21:57Z) - Analyticity constraints bound the decay of the spectral form factor [0.0]
Quantum chaos cannot develop faster than $lambda leq 2 pi/(hbar beta)$ for systems in thermal equilibrium.
We show that similar constraints also bound the decay of the spectral form factor (SFF)
The relation of the derived bound with other known bounds, including quantum speed limits, is discussed.
arXiv Detail & Related papers (2022-02-23T19:00:00Z) - Contrasting pseudo-criticality in the classical two-dimensional
Heisenberg and $\mathrm{RP}^2$ models: zero-temperature phase transition
versus finite-temperature crossover [0.0]
We compare the two-dimensional classical Heisenberg and $mathrmRP2$ models.
For the Heisenberg model, we find no signs of a finite-temperature phase transition.
For the $mathrmRP2$ model, we observe an abrupt onset of scaling behaviour.
arXiv Detail & Related papers (2022-02-15T17:35:15Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Information scrambling at finite temperature in local quantum systems [0.0]
This paper investigates the temperature dependence of quantum information scrambling in local systems with an energy gap, $m$, above the ground state.
We study the speed and shape of growing Heisenberg operators as quantified by out-of-time-order correlators.
arXiv Detail & Related papers (2020-05-21T17:49:52Z) - Quantum Monte Carlo study of strongly interacting bosonic
one-dimensional systems in periodic potentials [0.0]
We present Monte Carlo calculations of a one-dimensional Bose system with realistic interparticle interactions in a periodic external potential.
Our main aim is to test the predictions of the Luttinger liquid (LL) theory, in particular with respect to the super-Mott insulator transition at both zero and finite temperatures.
arXiv Detail & Related papers (2020-01-20T16:26:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.