論文の概要: When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges
- arxiv url: http://arxiv.org/abs/2401.10510v3
- Date: Fri, 07 Mar 2025 05:29:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 19:13:14.527565
- Title: When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges
- Title(参考訳): 大規模言語モデルと進化的アルゴリズム:潜在的な拡張と課題
- Authors: Chao Wang, Jiaxuan Zhao, Licheng Jiao, Lingling Li, Fang Liu, Shuyuan Yang,
- Abstract要約: 事前訓練された大規模言語モデル(LLM)は、自然なテキストを生成する強力な能力を示す。
進化的アルゴリズム(EA)は、複雑な現実世界の問題に対する多様な解決策を発見できる。
- 参考スコア(独自算出の注目度): 50.280704114978384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained large language models (LLMs) exhibit powerful capabilities for generating natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text generation and evolution, this paper first illustrates the conceptual parallels between LLMs and EAs at a micro level, which includes multiple one-to-one key characteristics: token representation and individual representation, position encoding and fitness shaping, position embedding and selection, Transformers block and reproduction, and model training and parameter adaptation. These parallels highlight potential opportunities for technical advancements in both LLMs and EAs. Subsequently, we analyze existing interdisciplinary research from a macro perspective to uncover critical challenges, with a particular focus on evolutionary fine-tuning and LLM-enhanced EAs. These analyses not only provide insights into the evolutionary mechanisms behind LLMs but also offer potential directions for enhancing the capabilities of artificial agents.
- Abstract(参考訳): 事前訓練された大規模言語モデル(LLM)は、自然なテキストを生成する強力な能力を示す。
進化的アルゴリズム(EA)は、複雑な現実世界の問題に対する多様な解決策を発見できる。
本論文は,テキスト生成と進化の共通する集合的・指向性により,トークン表現と個別表現,位置エンコーディングと適合形状,位置埋め込みと選択,トランスフォーマーブロックと再生,モデルトレーニングとパラメータ適応という,複数の1対1のキー特性を含む,マイクロレベルでのLLMとEAの概念的並列性を示す。
これらの並行性は、LLMとEAの両方の技術的進歩の可能性を浮き彫りにしている。
その後、マクロの観点から既存の学際研究を分析し、特に進化的微調整とLLM強化EAに着目して、重要な課題を明らかにする。
これらの分析は、LSMの背後にある進化のメカニズムに関する洞察を提供するだけでなく、人工エージェントの能力を高める可能性も与えている。
関連論文リスト
- A Call for New Recipes to Enhance Spatial Reasoning in MLLMs [85.67171333213301]
MLLM(Multimodal Large Language Models)は、一般的な視覚言語タスクにおいて印象的な性能を示す。
近年の研究では、空間的推論能力の限界が明らかにされている。
この空間的推論の欠如は、MLLMが物理的世界と効果的に相互作用する能力を著しく制限する。
論文 参考訳(メタデータ) (2025-04-21T11:48:39Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,5つのコアパラダイムにまたがるPoLMの進化を体系的に追跡する,最初の包括的調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models [51.316001071698224]
本稿では,生物配列関連命令チューニングデータセットであるBiology-Instructionsを紹介する。
このデータセットは、大きな言語モデル(LLM)と複雑な生物学的シーケンスに関連するタスクのギャップを埋めることができます。
また、新たな3段階トレーニングパイプラインを備えたChatMultiOmicsという強力なベースラインも開発しています。
論文 参考訳(メタデータ) (2024-12-26T12:12:23Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Exploring the Improvement of Evolutionary Computation via Large Language Models [3.4641800438055297]
進化計算(EC)は様々な領域に適用されている。
問題の複雑さが増大するにつれて、ECの限界はより明確になっている。
大きな言語モデルの膨大な知識と適応能力を活用することで、潜在的な改善の先見的な概要を提供する。
論文 参考訳(メタデータ) (2024-05-05T10:13:55Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
大規模言語モデル(LLM)は、様々な分野やインテリジェントエージェントアプリケーションにおいて大きく進歩している。
この問題に対処するために、LLMが自律的に獲得し、洗練し、モデル自身によって生成された経験から学ぶことができる自己進化的アプローチが急速に成長している。
論文 参考訳(メタデータ) (2024-04-22T17:43:23Z) - LLM Guided Evolution - The Automation of Models Advancing Models [0.0]
ガイドド・エボリューション(GE)は、従来の機械学習アプローチから切り離された斬新なフレームワークである。
思想の進化(EoT)は、従来の突然変異の結果からLLMを反映して学習させることでGEを強化する。
ExquisiteNetV2モデルの進化におけるGEの適用は,その有効性を示している。
論文 参考訳(メタデータ) (2024-03-18T03:44:55Z) - Evolutionary Computation in the Era of Large Language Model: Survey and Roadmap [26.959633651475016]
大規模言語モデル(LLM)と進化的アルゴリズム(EA)の相互作用は、複雑な問題における適用可能性の共通の追求を共有している。
LLMに固有の豊富なドメイン知識により、EAはよりインテリジェントな検索を行うことができる。
本稿では、相互インスピレーションを2つの主要な道に分類する、徹底的なレビューと前方のロードマップを提供する。
論文 参考訳(メタデータ) (2024-01-18T14:58:17Z) - Evolutionary Dynamic Optimization and Machine Learning [0.0]
進化計算(Evolutionary Computation, EC)は、人工知能の強力な分野として出現し、徐々に発展する自然のメカニズムに触発されている。
これらの制限を克服するために、研究者は学習アルゴリズムと進化的手法を統合した。
この統合は、反復探索中にECアルゴリズムによって生成された貴重なデータを活用し、検索空間と人口動態に関する洞察を提供する。
論文 参考訳(メタデータ) (2023-10-12T22:28:53Z) - Making LLaMA SEE and Draw with SEED Tokenizer [69.1083058794092]
大規模言語モデルにSEEとDrawの能力を持たせるための精巧な画像トークンであるSEEDを紹介します。
SEEDトークンを使うことで、LLMはオリジナルのトレーニングレシピの下でスケーラブルなマルチモーダルオートレグレスを実行することができる。
SEED-LLaMAはマルチターン・イン・コンテクスト・マルチモーダル生成のような合成創発的能力を示す。
論文 参考訳(メタデータ) (2023-10-02T14:03:02Z) - Connecting Large Language Models with Evolutionary Algorithms Yields
Powerful Prompt Optimizers [70.18534453485849]
EvoPromptは離散的なプロンプト最適化のためのフレームワークである。
進化的アルゴリズム(EA)の概念は、優れた性能と高速収束を示すものである。
人為的なプロンプトと既存の方法で自動プロンプト生成を著しく上回っている。
論文 参考訳(メタデータ) (2023-09-15T16:50:09Z) - A Survey on Learnable Evolutionary Algorithms for Scalable
Multiobjective Optimization [0.0]
多目的進化アルゴリズム(MOEA)は、様々な多目的最適化問題(MOP)を解決するために採用されている。
しかし、これらの進歩的に改善されたMOEAは、必ずしも高度にスケーラブルで学習可能な問題解決戦略を備えていない。
異なるシナリオの下では、効果的に解決するための新しい強力なMOEAを設計する必要がある。
MOPをスケールアップするための機械学習技術で自身を操る学習可能なMOEAの研究は、進化計算の分野で広く注目を集めている。
論文 参考訳(メタデータ) (2022-06-23T08:16:01Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。