Focaler-IoU: More Focused Intersection over Union Loss
- URL: http://arxiv.org/abs/2401.10525v1
- Date: Fri, 19 Jan 2024 07:01:07 GMT
- Title: Focaler-IoU: More Focused Intersection over Union Loss
- Authors: Hao Zhang, Shuaijie Zhang
- Abstract summary: Bounding box regression plays a crucial role in the field of object detection.
We analyzed the impact of difficult and easy sample distribution on regression results.
We proposed Focaler-IoU, which can improve detector performance in different detection tasks.
- Score: 5.8666339171606445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bounding box regression plays a crucial role in the field of object
detection, and the positioning accuracy of object detection largely depends on
the loss function of bounding box regression. Existing researchs improve
regression performance by utilizing the geometric relationship between bounding
boxes, while ignoring the impact of difficult and easy sample distribution on
bounding box regression. In this article, we analyzed the impact of difficult
and easy sample distribution on regression results, and then proposed
Focaler-IoU, which can improve detector performance in different detection
tasks by focusing on different regression samples. Finally, comparative
experiments were conducted using existing advanced detectors and regression
methods for different detection tasks, and the detection performance was
further improved by using the method proposed in this paper.Code is available
at \url{https://github.com/malagoutou/Focaler-IoU}.
Related papers
- Decoupled and Interactive Regression Modeling for High-performance One-stage 3D Object Detection [8.531052087985097]
Inadequate bounding box modeling in regression tasks constrains the performance of one-stage 3D object detection.
We propose Decoupled and Interactive Regression Modeling (DIRM) for one-stage detection.
arXiv Detail & Related papers (2024-09-01T10:47:22Z) - Hybrid Classification-Regression Adaptive Loss for Dense Object Detection [19.180514552400883]
We propose a Hybrid Classification-Regression Adaptive Loss, termed as HCRAL.
We introduce the Residual of Classification and IoU (RCI) module for cross-task supervision, addressing task inconsistencies, and the Conditioning Factor (CF) to focus on difficult-to-train samples within each task.
We also introduce a new strategy named Expanded Adaptive Training Sample Selection (EATSS) to provide additional samples that exhibit classification and regression inconsistencies.
arXiv Detail & Related papers (2024-08-30T10:31:39Z) - Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery [0.0]
We focus on distributed estimation and support recovery for high-dimensional linear quantile regression.
We transform the original quantile regression into the least-squares optimization.
An efficient algorithm is developed, which enjoys high computation and communication efficiency.
arXiv Detail & Related papers (2024-05-13T08:32:22Z) - Inner-IoU: More Effective Intersection over Union Loss with Auxiliary
Bounding Box [10.03001043843768]
We propose Inner-IoU loss, which calculates IoU loss through auxiliary bounding boxes.
For different datasets and detectors, we introduce a scaling factor ratio to control the scale size of the auxiliary bounding boxes.
Finally, integrate Inner-IoU into the existing IoU-based loss functions for simulation and comparative experiments.
arXiv Detail & Related papers (2023-11-06T05:14:24Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - ReDFeat: Recoupling Detection and Description for Multimodal Feature
Learning [51.07496081296863]
We recouple independent constraints of detection and description of multimodal feature learning with a mutual weighting strategy.
We propose a detector that possesses a large receptive field and is equipped with learnable non-maximum suppression layers.
We build a benchmark that contains cross visible, infrared, near-infrared and synthetic aperture radar image pairs for evaluating the performance of features in feature matching and image registration tasks.
arXiv Detail & Related papers (2022-05-16T04:24:22Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain.
We present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection.
Our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
arXiv Detail & Related papers (2021-03-10T16:45:22Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot object detection (FSOD) helps detectors adapt to unseen classes with few training instances.
We propose a Multi-scale Positive Sample Refinement (MPSR) approach to enrich object scales in FSOD.
MPSR generates multi-scale positive samples as object pyramids and refines the prediction at various scales.
arXiv Detail & Related papers (2020-07-18T09:48:29Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
Region sampling or weighting is significantly important to the success of modern region-based object detectors.
We argue that sample weighting should be data-dependent and task-dependent.
We propose a unified sample weighting network to predict a sample's task weights.
arXiv Detail & Related papers (2020-06-11T16:19:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.