Hybrid Classification-Regression Adaptive Loss for Dense Object Detection
- URL: http://arxiv.org/abs/2408.17182v1
- Date: Fri, 30 Aug 2024 10:31:39 GMT
- Title: Hybrid Classification-Regression Adaptive Loss for Dense Object Detection
- Authors: Yanquan Huang, Liu Wei Zhen, Yun Hao, Mengyuan Zhang, Qingyao Wu, Zikun Deng, Xueming Liu, Hong Deng,
- Abstract summary: We propose a Hybrid Classification-Regression Adaptive Loss, termed as HCRAL.
We introduce the Residual of Classification and IoU (RCI) module for cross-task supervision, addressing task inconsistencies, and the Conditioning Factor (CF) to focus on difficult-to-train samples within each task.
We also introduce a new strategy named Expanded Adaptive Training Sample Selection (EATSS) to provide additional samples that exhibit classification and regression inconsistencies.
- Score: 19.180514552400883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For object detection detectors, enhancing model performance hinges on the ability to simultaneously consider inconsistencies across tasks and focus on difficult-to-train samples. Achieving this necessitates incorporating information from both the classification and regression tasks. However, prior work tends to either emphasize difficult-to-train samples within their respective tasks or simply compute classification scores with IoU, often leading to suboptimal model performance. In this paper, we propose a Hybrid Classification-Regression Adaptive Loss, termed as HCRAL. Specifically, we introduce the Residual of Classification and IoU (RCI) module for cross-task supervision, addressing task inconsistencies, and the Conditioning Factor (CF) to focus on difficult-to-train samples within each task. Furthermore, we introduce a new strategy named Expanded Adaptive Training Sample Selection (EATSS) to provide additional samples that exhibit classification and regression inconsistencies. To validate the effectiveness of the proposed method, we conduct extensive experiments on COCO test-dev. Experimental evaluations demonstrate the superiority of our approachs. Additionally, we designed experiments by separately combining the classification and regression loss with regular loss functions in popular one-stage models, demonstrating improved performance.
Related papers
- Adaptive Intra-Class Variation Contrastive Learning for Unsupervised Person Re-Identification [10.180143197144803]
We propose an adaptive intra-class variation contrastive learning algorithm for unsupervised Re-ID, called AdaInCV.
The algorithm quantitatively evaluates the learning ability of the model for each class by considering the intra-class variations after clustering.
To be more specific, two new strategies are proposed: Adaptive Sample Mining (AdaSaM) and Adaptive Outlier Filter (AdaOF)
arXiv Detail & Related papers (2024-04-06T15:48:14Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Adaptive Meta-learner via Gradient Similarity for Few-shot Text
Classification [11.035878821365149]
We propose a novel Adaptive Meta-learner via Gradient Similarity (AMGS) to improve the model generalization ability to a new task.
Experimental results on several benchmarks demonstrate that the proposed AMGS consistently improves few-shot text classification performance.
arXiv Detail & Related papers (2022-09-10T16:14:53Z) - Fine-grained Retrieval Prompt Tuning [149.9071858259279]
Fine-grained Retrieval Prompt Tuning steers a frozen pre-trained model to perform the fine-grained retrieval task from the perspectives of sample prompt and feature adaptation.
Our FRPT with fewer learnable parameters achieves the state-of-the-art performance on three widely-used fine-grained datasets.
arXiv Detail & Related papers (2022-07-29T04:10:04Z) - Adaptive Fine-Grained Predicates Learning for Scene Graph Generation [122.4588401267544]
General Scene Graph Generation (SGG) models tend to predict head predicates and re-balancing strategies prefer tail categories.
We propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG.
Our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100, achieving new state-of-the-art performance.
arXiv Detail & Related papers (2022-07-11T03:37:57Z) - Model Rectification via Unknown Unknowns Extraction from Deployment
Samples [8.0497115494227]
We propose a general algorithmic framework that aims to perform a post-training model rectification at deployment time in a supervised way.
RTSCV extracts unknown unknowns (u.u.s)
We show that RTSCV consistently outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2021-02-08T11:46:19Z) - Adaptive Adversarial Logits Pairing [65.51670200266913]
An adversarial training solution Adversarial Logits Pairing (ALP) tends to rely on fewer high-contribution features compared with vulnerable ones.
Motivated by these observations, we design an Adaptive Adversarial Logits Pairing (AALP) solution by modifying the training process and training target of ALP.
AALP consists of an adaptive feature optimization module with Guided Dropout to systematically pursue fewer high-contribution features.
arXiv Detail & Related papers (2020-05-25T03:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.