論文の概要: MixNet: Efficient Global Modeling for Ultra-High-Definition Image Restoration
- arxiv url: http://arxiv.org/abs/2401.10666v2
- Date: Sun, 29 Sep 2024 07:07:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:59:48.773686
- Title: MixNet: Efficient Global Modeling for Ultra-High-Definition Image Restoration
- Title(参考訳): MixNet:超高精細画像復元のための効率的なグローバルモデリング
- Authors: Chen Wu, Zhuoran Zheng, Yuning Cui, Wenqi Ren,
- Abstract要約: そこで我々は,MixNetという新たな画像復元手法を提案する。
過剰な計算複雑性を伴わずに、機能の長距離依存性を捉えるために、Global Feature Modulation Layer (GFML)を提示する。
低照度画像強調,水中画像強調,画像劣化,画像復調を含む4つのUHD画像復元タスクについて広範な実験を行い,提案手法が現在の最先端手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 36.15948393000783
- License:
- Abstract: Recent advancements in image restoration methods employing global modeling have shown promising results. However, these approaches often incur substantial memory requirements, particularly when processing ultra-high-definition (UHD) images. In this paper, we propose a novel image restoration method called MixNet, which introduces an alternative approach to global modeling approaches and is more effective for UHD image restoration. To capture the longrange dependency of features without introducing excessive computational complexity, we present the Global Feature Modulation Layer (GFML). GFML associates features from different views by permuting the feature maps, enabling efficient modeling of long-range dependency. In addition, we also design the Local Feature Modulation Layer (LFML) and Feed-forward Layer (FFL) to capture local features and transform features into a compact representation. This way, our MixNetachieves effective restoration with low inference time overhead and computational complexity. We conduct extensive experiments on four UHD image restoration tasks, including low-light image enhancement, underwater image enhancement, image deblurring and image demoireing, and the comprehensive results demonstrate that our proposed method surpasses the performance of current state-of-the-art methods. The code will be available at \url{https://github.com/5chen/MixNet}.
- Abstract(参考訳): グローバルモデリングを用いた画像復元手法の最近の進歩は有望な成果を示している。
しかしながら、これらのアプローチは、特に超高精細(UHD)画像を処理する際に、かなりのメモリ要件を引き起こすことが多い。
本論文では,大域的モデリング手法に代替アプローチを導入し,UHD画像復元に有効であるMixNetという新しい画像復元手法を提案する。
過剰な計算複雑性を伴わずに、機能の長距離依存性を捉えるために、Global Feature Modulation Layer (GFML)を提案する。
GFMLは、機能マップを置換することで、異なるビューの機能を関連付け、長距離依存性の効率的なモデリングを可能にする。
さらに、局所特徴変調層(LFML)とフィードフォワード層(FFL)を設計して、局所特徴をキャプチャし、特徴をコンパクトな表現に変換する。
このようにして、MixNetachievesは、推論時間のオーバーヘッドと計算の複雑さを低くして、効果的な復元を行ないます。
低照度画像強調,水中画像強調,画像劣化,画像復調を含む4つのUHD画像復元タスクについて広範な実験を行い,提案手法が現在の最先端手法よりも優れていることを示す。
コードは \url{https://github.com/5chen/MixNet} で入手できる。
関連論文リスト
- Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
展開融合法は、ディープラーニングの強力な表現能力とモデルベースアプローチの堅牢性を統合する。
本稿では,衛星画像融合のためのモデルに基づく深部展開手法を提案する。
PRISMA、Quickbird、WorldView2データセットの実験結果から、本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-04T13:05:00Z) - Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
効率的な画像復元のためのマルチスケール状態空間モデル(MS-Mamba)を提案する。
提案手法は,計算複雑性を低く保ちながら,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-08-19T16:42:58Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware
Training [112.96224800952724]
複雑な画像に大きな穴をあける際の可視像構造を生成するためのカスケード変調GAN(CM-GAN)を提案する。
各デコーダブロックにおいて、まず大域変調を適用し、粗い意味認識合成構造を行い、次に大域変調の出力に空間変調を適用し、空間適応的に特徴写像を更に調整する。
さらに,ネットワークがホール内の新たな物体を幻覚させるのを防ぐため,実世界のシナリオにおける物体除去タスクのニーズを満たすために,オブジェクト認識型トレーニングスキームを設計する。
論文 参考訳(メタデータ) (2022-03-22T16:13:27Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。