Generative Model for Constructing Reaction Path from Initial to Final States
- URL: http://arxiv.org/abs/2401.10721v2
- Date: Thu, 17 Oct 2024 08:15:27 GMT
- Title: Generative Model for Constructing Reaction Path from Initial to Final States
- Authors: Akihide Hayashi, So Takamoto, Ju Li, Yuta Tsuboi, Daisuke Okanohara,
- Abstract summary: This paper presents an innovative approach that utilizes neural networks to generate initial guesses for reaction pathways.
The proposed method is initiated by inputting the coordinates of the initial state, followed by progressive alterations to its structure.
The application of this geometry-based method extends to complex reaction pathways illustrated by organic reactions.
- Score: 0.47477099173857373
- License:
- Abstract: Mapping the chemical reaction pathways and their corresponding activation barriers is a significant challenge in molecular simulation. Given the inherent complexities of 3D atomic geometries, even generating an initial guess of these paths can be difficult for humans. This paper presents an innovative approach that utilizes neural networks to generate initial guesses for reaction pathways based on the initial state and learning from a database of low-energy transition paths. The proposed method is initiated by inputting the coordinates of the initial state, followed by progressive alterations to its structure. This iterative process culminates in the generation of the guess reaction path and the coordinates of the final state. The method does not require one-the-fly computation of the actual potential energy surface, and is therefore fast-acting. The application of this geometry-based method extends to complex reaction pathways illustrated by organic reactions. Training was executed on the Transition1x dataset of organic reaction pathways. The results revealed the generation of reactions that bore substantial similarities with the test set of chemical reaction paths. The method's flexibility allows for reactions to be generated either to conform to predetermined conditions or in a randomized manner.
Related papers
- A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device [32.65699367892846]
We investigate the feasibility of simulating reaction dynamics using a bosonic superconducting Kerr-cat device.
This approach provides control over parameters defining the double-well free energy profile, as well as external factors like temperature and the coupling strength between the reaction coordinate and the thermal bath of non-reactive degrees of freedom.
arXiv Detail & Related papers (2024-09-19T22:43:08Z) - Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Multi-level Protocol for Mechanistic Reaction Studies Using Semi-local
Fitted Potential Energy Surfaces [0.0]
We propose a multi-scale protocol for routine theoretical studies of chemical reaction mechanisms.
The key aspect of the method's performance is its multi-scale nature, which not only saves computational effort but also allows extracting meaningful information.
arXiv Detail & Related papers (2023-04-03T12:55:29Z) - A linear response framework for simulating bosonic and fermionic
correlation functions illustrated on quantum computers [58.720142291102135]
Lehmann formalism for obtaining response functions in linear response has no direct link to experiment.
Within the context of quantum computing, we make the experiment an inextricable part of the quantum simulation.
We show that both bosonic and fermionic Green's functions can be obtained, and apply these ideas to the study of a charge-density-wave material.
arXiv Detail & Related papers (2023-02-20T19:01:02Z) - MARS: A Motif-based Autoregressive Model for Retrosynthesis Prediction [54.75583184356392]
We propose a novel end-to-end graph generation model for retrosynthesis prediction.
It sequentially identifies the reaction center, generates the synthons, and adds motifs to the synthons to generate reactants.
Experiments on a benchmark dataset show that the proposed model significantly outperforms previous state-of-the-art algorithms.
arXiv Detail & Related papers (2022-09-27T06:29:35Z) - Self-Improved Retrosynthetic Planning [66.5397931294144]
Retrosynthetic planning is a fundamental problem in chemistry for finding a pathway of reactions to synthesize a target molecule.
Recent search algorithms have shown promising results for solving this problem by using deep neural networks (DNNs)
We propose an end-to-end framework for directly training the DNNs towards generating reaction pathways with the desirable properties.
arXiv Detail & Related papers (2021-06-09T08:03:57Z) - Non-Autoregressive Electron Redistribution Modeling for Reaction
Prediction [26.007965383304864]
We devise a non-autoregressive learning paradigm that predicts reaction in one shot.
We formulate a reaction as an arbitrary electron flow and predict it with a novel multi-pointer decoding network.
Experiments on the USPTO-MIT dataset show that our approach has established a new state-of-the-art top-1 accuracy.
arXiv Detail & Related papers (2021-06-08T16:39:08Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z) - Autonomous Discovery of Unknown Reaction Pathways from Data by Chemical
Reaction Neural Network [0.0]
Chemical reactions occur in energy, environmental, biological, and many other natural systems.
Here, we present a neural network approach that autonomously discovers reaction pathways from the time-resolved species concentration data.
The proposed Chemical Reaction Neural Network (CRNN), by design, satisfies the fundamental physics laws, including the Law of Mass Action and the Arrhenius Law.
arXiv Detail & Related papers (2020-02-20T23:36:46Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
Computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities.
We propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks.
arXiv Detail & Related papers (2020-01-06T05:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.