FinLLMs: A Framework for Financial Reasoning Dataset Generation with
Large Language Models
- URL: http://arxiv.org/abs/2401.10744v1
- Date: Fri, 19 Jan 2024 15:09:39 GMT
- Title: FinLLMs: A Framework for Financial Reasoning Dataset Generation with
Large Language Models
- Authors: Ziqiang Yuan, Kaiyuan Wang, Shoutai Zhu, Ye Yuan, Jingya Zhou, Yanlin
Zhu, Wenqi Wei
- Abstract summary: FinLLMs is a method for generating financial question-answering data based on common financial formulas using Large Language Models.
Our experiments demonstrate that synthetic data generated by FinLLMs effectively enhances the performance of several large-scale numerical reasoning models in the financial domain.
- Score: 12.367548338910744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language models (LLMs) usually rely on extensive training datasets. In
the financial domain, creating numerical reasoning datasets that include a mix
of tables and long text often involves substantial manual annotation expenses.
To address the limited data resources and reduce the annotation cost, we
introduce FinLLMs, a method for generating financial question-answering data
based on common financial formulas using Large Language Models. First, we
compile a list of common financial formulas and construct a graph based on the
variables these formulas employ. We then augment the formula set by combining
those that share identical variables as new elements. Specifically, we explore
formulas obtained by manual annotation and merge those formulas with shared
variables by traversing the constructed graph. Finally, utilizing GPT-3.5, we
generate financial question-answering data that encompasses both tabular
information and long textual content, building on the collected formula set.
Our experiments demonstrate that synthetic data generated by FinLLMs
effectively enhances the performance of several large-scale numerical reasoning
models in the financial domain, outperforming two established benchmark
financial question-answering datasets.
Related papers
- SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
Large language models (LLMs) have become powerful tools for advancing natural language processing applications in the financial industry.
We propose a novel large language model specifically designed for the Chinese financial domain, named SNFinLLM.
SNFinLLM excels in domain-specific tasks such as answering questions, summarizing financial research reports, analyzing sentiment, and executing financial calculations.
arXiv Detail & Related papers (2024-08-05T08:24:24Z) - Large Language Model Adaptation for Financial Sentiment Analysis [2.0499240875882]
Generalist language models tend to fall short in tasks specifically tailored for finance.
Two foundation models with less than 1.5B parameters have been adapted using a wide range of strategies.
We show that small LLMs have comparable performance to larger scale models, while being more efficient in terms of parameters and data.
arXiv Detail & Related papers (2024-01-26T11:04:01Z) - DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple
Experts Fine-tuning [74.99318727786337]
We propose Multiple Experts Fine-tuning Framework to build a financial large language model (LLM)
We build a financial instruction-tuning dataset named DISC-FIN-SFT, including instruction samples of four categories (consulting, NLP tasks, computing and retrieval-augmented generation)
Evaluations conducted on multiple benchmarks demonstrate that our model performs better than baseline models in various financial scenarios.
arXiv Detail & Related papers (2023-10-23T11:33:41Z) - FinDiff: Diffusion Models for Financial Tabular Data Generation [5.824064631226058]
FinDiff is a diffusion model designed to generate real-world financial data for a variety of regulatory downstream tasks.
It is evaluated against state-of-the-art baseline models using three real-world financial datasets.
arXiv Detail & Related papers (2023-09-04T09:30:15Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - Benchmarking Diverse-Modal Entity Linking with Generative Models [78.93737257356784]
We construct a benchmark for diverse-modal EL (DMEL) from existing EL datasets.
To approach the DMEL task, we proposed a generative diverse-modal model (GDMM) following a multimodal-encoder-decoder paradigm.
GDMM builds a stronger DMEL baseline, outperforming state-of-the-art task-specific EL models by 8.51 F1 score on average.
arXiv Detail & Related papers (2023-05-27T02:38:46Z) - REFinD: Relation Extraction Financial Dataset [7.207699035400335]
We propose REFinD, the first large-scale annotated dataset of relations, with $sim$29K instances and 22 relations amongst 8 types of entity pairs, generated entirely over financial documents.
We observed that various state-of-the-art deep learning models struggle with numeric inference, relational and directional ambiguity.
arXiv Detail & Related papers (2023-05-22T22:40:11Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
We focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents.
We propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts.
The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge.
arXiv Detail & Related papers (2021-09-01T00:08:14Z) - GFTE: Graph-based Financial Table Extraction [66.26206038522339]
In financial industry and many other fields, tables are often disclosed in unstructured digital files, e.g. Portable Document Format (PDF) and images.
We publish a standard Chinese dataset named FinTab, which contains more than 1,600 financial tables of diverse kinds.
We propose a novel graph-based convolutional network model named GFTE as a baseline for future comparison.
arXiv Detail & Related papers (2020-03-17T07:10:05Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.