論文の概要: Estimation of AMOC transition probabilities using a machine learning based rare-event algorithm
- arxiv url: http://arxiv.org/abs/2401.10800v3
- Date: Tue, 2 Jul 2024 10:06:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 07:49:21.904479
- Title: Estimation of AMOC transition probabilities using a machine learning based rare-event algorithm
- Title(参考訳): 機械学習に基づくレアイベントアルゴリズムによるAMOC遷移確率の推定
- Authors: Valérian Jacques-Dumas, René M. van Westen, Henk A. Dijkstra,
- Abstract要約: アトランティック・メリディショナル・オーバーターン循環(Atlantic Meridional Overturning Circulation、AMOC)は、地球規模の気候の重要な構成要素である。
本研究では、AMOCが特定の時間窓内で崩壊する確率を計算する。
希少なアルゴリズムと機械学習を結合することで、遷移確率を正確に推定できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the global climate, known to be a tipping element, as it could collapse under global warming. The main objective of this study is to compute the probability that the AMOC collapses within a specified time window, using a rare-event algorithm called Trajectory-Adaptive Multilevel Splitting (TAMS). However, the efficiency and accuracy of TAMS depend on the choice of the score function. Although the definition of the optimal score function, called ``committor function" is known, it is impossible in general to compute it a priori. Here, we combine TAMS with a Next-Generation Reservoir Computing technique that estimates the committor function from the data generated by the rare-event algorithm. We test this technique in a stochastic box model of the AMOC for which two types of transition exist, the so-called F(ast)-transitions and S(low)-transitions. Results for the F-transtions compare favorably with those in the literature where a physically-informed score function was used. We show that coupling a rare-event algorithm with machine learning allows for a correct estimation of transition probabilities, transition times, and even transition paths for a wide range of model parameters. We then extend these results to the more difficult problem of S-transitions in the same model. In both cases of F-transitions and S-transitions, we also show how the Next-Generation Reservoir Computing technique can be interpreted to retrieve an analytical estimate of the committor function.
- Abstract(参考訳): アトランティック・メリディショナル・オーバーターン循環(Atlantic Meridional Overturning Circulation、AMOC)は、地球温暖化によって崩壊する可能性があるため、地球規模の気候の重要な要素である。
本研究の目的は,TAMS (Trajectory-Adaptive Multilevel Splitting) と呼ばれる希少なアルゴリズムを用いて,AMOCが特定の時間窓内で崩壊する確率を計算することである。
しかし,TAMSの効率と精度はスコア関数の選択に依存する。
最適スコア関数の定義は ``committor function' と呼ばれるが、一般にはそれを事前計算することは不可能である。
本稿では,TAMSとNext-Generation Reservoir Computing技術を組み合わせて,レアイベントアルゴリズムによって生成されたデータからコミッタ関数を推定する。
本稿では,この手法を,F(ast)-transitionsとS(low)-transitionsという2種類の遷移が存在するAMOCの確率的ボックスモデルで検証する。
F-transtionsの結果は,物理インフォームドスコア関数を用いた文献と比較した。
機械学習と希少なアルゴリズムを結合することにより、幅広いモデルパラメータに対する遷移確率、遷移時間、遷移経路の正確な推定が可能になることを示す。
次に、これらの結果を同じモデルにおけるS-遷移のより難しい問題に拡張する。
また, F-transitions と S-transitions のどちらの場合においても, 次世代貯留層計算技術がどのように解釈され, コミッタ関数の解析的推定値を取得するかを示す。
関連論文リスト
- Adversarial Schrödinger Bridge Matching [66.39774923893103]
反復マルコフフィッティング(IMF)手順は、マルコフ過程の相互射影と相互射影を交互に交互に行う。
本稿では、プロセスの学習を離散時間でほんの少しの遷移確率の学習に置き換える新しい離散時間IMF(D-IMF)手順を提案する。
D-IMFの手続きは、数百ではなく数世代のステップで、IMFと同じ品質の未完成のドメイン翻訳を提供できることを示す。
論文 参考訳(メタデータ) (2024-05-23T11:29:33Z) - Variational Sampling of Temporal Trajectories [39.22854981703244]
遷移関数 $f$ を関数空間の要素として明示的にパラメータ化することにより、軌道の分布を学習する機構を導入する。
我々のフレームワークは、新しい軌道の効率的な合成を可能にすると同時に、推論に便利なツールを直接提供します。
論文 参考訳(メタデータ) (2024-03-18T02:12:12Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
SMURF-THPは,変圧器ホークス過程を学習し,予測の不確かさを定量化するスコアベース手法である。
具体的には、SMURF-THPは、スコアマッチング目標に基づいて、イベントの到着時刻のスコア関数を学習する。
我々は,イベントタイプ予測と到着時刻の不確実性定量化の両方において,広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-25T03:33:45Z) - A Finite Expression Method for Solving High-Dimensional Committor Problems [5.748690310135373]
有限表現法(FEX)をコミッタの計算ツールとして検討する。
FEXベースのコミッタソルバは、いくつかの高次元ベンチマーク問題でテストされる。
論文 参考訳(メタデータ) (2023-06-21T13:43:59Z) - High-Performance Transformer Tracking [74.07751002861802]
本稿では,シームズ様特徴抽出バックボーンをベースとしたTransformer Tracking(TransT)手法,設計した注意に基づく融合機構,分類と回帰ヘッドを提案する。
実験の結果,TransT法とTransT-M法は7つの一般的なデータセットに対して有望な結果が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-25T09:33:29Z) - Supervised Learning and the Finite-Temperature String Method for
Computing Committor Functions and Reaction Rates [0.0]
希少事象の計算研究における中心的な対象はコミッタ関数である。
アルゴリズムの精度を改善するために追加の修正が必要であることを示す。
論文 参考訳(メタデータ) (2021-07-28T17:44:00Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
正確な数値と摂動解析手法を用いて効率的にゲートパラメータを抽出する方法を示す。
我々は,$i$SWAP, Control-Z, CNOT など,異なる種類のゲートに対する最適操作条件を同定する。
論文 参考訳(メタデータ) (2021-07-06T02:02:54Z) - Classification and Feature Transformation with Fuzzy Cognitive Maps [0.3299672391663526]
Fuzzy Cognitive Maps(FCM)は、ファジィ論理と繰り返しニューラルネットワークの要素を組み合わせたソフトコンピューティング技術と考えられている。
本研究では,フルコネクテッドマップ構造を有するFCMに基づく分類器を提案する。
重みを勾配アルゴリズムで学習し,コスト関数としてloglossやcross-entropyを用いた。
論文 参考訳(メタデータ) (2021-03-08T22:26:24Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z) - Latent Transformations for Discrete-Data Normalising Flows [15.005894753472894]
我々は、ある変換を決定論的にパラメータ化するのではなく、潜在変換よりも分布を予測できる非バイアスの代替案を提案する。
変換では、データの限界確率は微分可能であり、スコア関数推定による勾配に基づく学習が可能となる。
決定論的プロキシ勾配と偏りのないスコア関数推定の両方で大きな課題を観測する。
論文 参考訳(メタデータ) (2020-06-11T11:41:28Z) - Differentiable Top-k Operator with Optimal Transport [135.36099648554054]
SOFTトップk演算子は、エントロピック最適輸送(EOT)問題の解として、トップk演算の出力を近似する。
提案した演算子をk-アネレスト近傍およびビーム探索アルゴリズムに適用し,性能向上を示す。
論文 参考訳(メタデータ) (2020-02-16T04:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。