Pruning for Protection: Increasing Jailbreak Resistance in Aligned LLMs Without Fine-Tuning
- URL: http://arxiv.org/abs/2401.10862v3
- Date: Thu, 31 Oct 2024 04:16:12 GMT
- Title: Pruning for Protection: Increasing Jailbreak Resistance in Aligned LLMs Without Fine-Tuning
- Authors: Adib Hasan, Ileana Rugina, Alex Wang,
- Abstract summary: We show that moderate WANDA pruning can enhance resistance to jailbreaking attacks without fine-tuning.
We introduce a dataset of 225 harmful tasks across five categories.
We find that LLaMA-2 is much safer on AdvBench prompts than on our dataset when evaluated with manual jailbreak attempts.
- Score: 6.579419241184795
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the impact of model compression on the way Large Language Models (LLMs) process prompts, particularly concerning jailbreak resistance. We show that moderate WANDA pruning can enhance resistance to jailbreaking attacks without fine-tuning, while maintaining performance on standard benchmarks. To systematically evaluate this safety enhancement, we introduce a dataset of 225 harmful tasks across five categories. Our analysis of LLaMA-2 Chat, Vicuna 1.3, and Mistral Instruct v0.2 reveals that pruning benefits correlate with initial model safety levels. We interpret these results by examining changes in attention patterns and perplexity shifts, demonstrating that pruned models exhibit sharper attention and increased sensitivity to artificial jailbreak constructs. We extend our evaluation to the AdvBench harmful behavior tasks and the GCG attack method. We find that LLaMA-2 is much safer on AdvBench prompts than on our dataset when evaluated with manual jailbreak attempts, and that pruning is effective against both automated attacks and manual jailbreaking on Advbench.
Related papers
- Attention Slipping: A Mechanistic Understanding of Jailbreak Attacks and Defenses in LLMs [61.916827858666906]
We reveal a universal phenomenon that occurs during jailbreak attacks: Attention Slipping.<n>We show Attention Slipping is consistent across various jailbreak methods, including gradient-based token replacement, prompt-level template refinement, and in-context learning.<n>We propose Attention Sharpening, a new defense that directly counters Attention Slipping by sharpening the attention score distribution using temperature scaling.
arXiv Detail & Related papers (2025-07-06T12:19:04Z) - DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification [18.006622965818856]
We introduce DETAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs.
Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks.
During inference, we reallocate attention to emphasize the user's core intention, minimizing interference from attack tokens.
arXiv Detail & Related papers (2025-04-18T09:02:12Z) - AdaSteer: Your Aligned LLM is Inherently an Adaptive Jailbreak Defender [73.09848497762667]
We propose AdaSteer, an adaptive activation steering method that adjusts model behavior based on input characteristics.
AdaSteer steers input representations along both the Rejection Direction (RD) and Harmfulness Direction (HD)
Our results highlight the potential of interpretable model internals for real-time, flexible safety enforcement in LLMs.
arXiv Detail & Related papers (2025-04-13T07:39:17Z) - SafeInt: Shielding Large Language Models from Jailbreak Attacks via Safety-Aware Representation Intervention [14.509085965856643]
Jailbreak attacks exploit vulnerabilities in large language models (LLMs) to induce undesirable behavior.
Previous defenses often fail to achieve both effectiveness and efficiency simultaneously.
We propose SafeIntervention (SafeInt), a novel defense method that shields LLMs from jailbreak attacks through safety-aware representation intervention.
arXiv Detail & Related papers (2025-02-21T17:12:35Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.
We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.
We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, Multimodal Large Language Models (MLLMs) remain vulnerable to jailbreak attacks.
We propose Immune, an inference-time defense framework that leverages a safe reward model through controlled decoding to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - Rapid Response: Mitigating LLM Jailbreaks with a Few Examples [13.841146655178585]
We develop rapid response techniques to look to block whole classes of jailbreaks after observing only a handful of attacks.
We evaluate five rapid response methods, all of which use jailbreak proliferation.
Our strongest method reduces attack success rate by a factor greater than 240 on an in-distribution set of jailbreaks and a factor greater than 15 on an out-of-distribution set.
arXiv Detail & Related papers (2024-11-12T02:44:49Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
This paper advocates for the significance of jailbreak attack prevention on Large Language Models (LLMs)
We introduce MoJE, a novel guardrail architecture designed to surpass current limitations in existing state-of-the-art guardrails.
MoJE excels in detecting jailbreak attacks while maintaining minimal computational overhead during model inference.
arXiv Detail & Related papers (2024-09-26T10:12:19Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
We propose a jailbreak attack defense strategy based on a Hidden State Filter (HSF)
HSF enables the model to preemptively identify and reject adversarial inputs before the inference process begins.
It significantly reduces the success rate of jailbreak attacks while minimally impacting responses to benign user queries.
arXiv Detail & Related papers (2024-08-31T06:50:07Z) - Prefix Guidance: A Steering Wheel for Large Language Models to Defend Against Jailbreak Attacks [27.11523234556414]
We propose a plug-and-play and easy-to-deploy jailbreak defense framework, namely Prefix Guidance (PG)
PG guides the model to identify harmful prompts by directly setting the first few tokens of the model's output.
We demonstrate the effectiveness of PG across three models and five attack methods.
arXiv Detail & Related papers (2024-08-15T14:51:32Z) - WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models [66.34505141027624]
We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics.
WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks.
arXiv Detail & Related papers (2024-06-26T17:31:22Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models [123.66104233291065]
Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content.
evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address.
JailbreakBench is an open-sourced benchmark with the following components.
arXiv Detail & Related papers (2024-03-28T02:44:02Z) - A StrongREJECT for Empty Jailbreaks [72.8807309802266]
StrongREJECT is a high-quality benchmark for evaluating jailbreak performance.
It scores the harmfulness of a victim model's responses to forbidden prompts.
It achieves state-of-the-art agreement with human judgments of jailbreak effectiveness.
arXiv Detail & Related papers (2024-02-15T18:58:09Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.