MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks
- URL: http://arxiv.org/abs/2409.17699v3
- Date: Fri, 4 Oct 2024 07:16:19 GMT
- Title: MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks
- Authors: Giandomenico Cornacchia, Giulio Zizzo, Kieran Fraser, Muhammad Zaid Hameed, Ambrish Rawat, Mark Purcell,
- Abstract summary: This paper advocates for the significance of jailbreak attack prevention on Large Language Models (LLMs)
We introduce MoJE, a novel guardrail architecture designed to surpass current limitations in existing state-of-the-art guardrails.
MoJE excels in detecting jailbreak attacks while maintaining minimal computational overhead during model inference.
- Score: 2.873719680183099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of Large Language Models (LLMs) in diverse applications underscores the pressing need for robust security measures to thwart potential jailbreak attacks. These attacks exploit vulnerabilities within LLMs, endanger data integrity and user privacy. Guardrails serve as crucial protective mechanisms against such threats, but existing models often fall short in terms of both detection accuracy, and computational efficiency. This paper advocates for the significance of jailbreak attack prevention on LLMs, and emphasises the role of input guardrails in safeguarding these models. We introduce MoJE (Mixture of Jailbreak Expert), a novel guardrail architecture designed to surpass current limitations in existing state-of-the-art guardrails. By employing simple linguistic statistical techniques, MoJE excels in detecting jailbreak attacks while maintaining minimal computational overhead during model inference. Through rigorous experimentation, MoJE demonstrates superior performance capable of detecting 90% of the attacks without compromising benign prompts, enhancing LLMs security against jailbreak attacks.
Related papers
- Exploiting Prefix-Tree in Structured Output Interfaces for Enhancing Jailbreak Attacking [34.479355499938116]
Large Language Models (LLMs) have led to significant applications but also introduced serious security threats.
We introduce a black-box attack framework called AttackPrefixTree (APT)
APT exploits structured output interfaces to dynamically construct attack patterns.
Experiments on benchmark datasets indicate that this approach achieves higher attack success rate than existing methods.
arXiv Detail & Related papers (2025-02-19T08:29:36Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.
We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)
We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.
We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.
We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - JailPO: A Novel Black-box Jailbreak Framework via Preference Optimization against Aligned LLMs [11.924542310342282]
We present JailPO, a novel black-box jailbreak framework to examine Large Language Models (LLMs) alignment.
For scalability and universality, JailPO meticulously trains attack models to automatically generate covert jailbreak prompts.
We also introduce a preference optimization-based attack method to enhance the jailbreak effectiveness.
arXiv Detail & Related papers (2024-12-20T07:29:10Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, MLLMs remain vulnerable to jailbreak attacks.
We propose Immune, an inference-time defense framework that leverages a safe reward model to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.