論文の概要: Artificial intelligence to automate the systematic review of scientific
literature
- arxiv url: http://arxiv.org/abs/2401.10917v1
- Date: Sat, 13 Jan 2024 19:12:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-28 16:09:51.700309
- Title: Artificial intelligence to automate the systematic review of scientific
literature
- Title(参考訳): 科学文献の体系的レビューを自動化する人工知能
- Authors: Jos\'e de la Torre-L\'opez and Aurora Ram\'irez and Jos\'e Ra\'ul
Romero
- Abstract要約: 我々は過去15年間に提案されたAI技術について,研究者が科学的文献の体系的な分析を行うのを助けるために調査を行った。
現在サポートされているタスク、適用されるアルゴリズムの種類、34の初等研究で提案されているツールについて説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) has acquired notorious relevance in modern
computing as it effectively solves complex tasks traditionally done by humans.
AI provides methods to represent and infer knowledge, efficiently manipulate
texts and learn from vast amount of data. These characteristics are applicable
in many activities that human find laborious or repetitive, as is the case of
the analysis of scientific literature. Manually preparing and writing a
systematic literature review (SLR) takes considerable time and effort, since it
requires planning a strategy, conducting the literature search and analysis,
and reporting the findings. Depending on the area under study, the number of
papers retrieved can be of hundreds or thousands, meaning that filtering those
relevant ones and extracting the key information becomes a costly and
error-prone process. However, some of the involved tasks are repetitive and,
therefore, subject to automation by means of AI. In this paper, we present a
survey of AI techniques proposed in the last 15 years to help researchers
conduct systematic analyses of scientific literature. We describe the tasks
currently supported, the types of algorithms applied, and available tools
proposed in 34 primary studies. This survey also provides a historical
perspective of the evolution of the field and the role that humans can play in
an increasingly automated SLR process.
- Abstract(参考訳): 人工知能(AI)は、人間が伝統的に行ってきた複雑なタスクを効果的に解決するため、現代コンピューティングにおける悪名高い関連性を獲得した。
aiは知識を表現し、推論し、テキストを効率的に操作し、膨大なデータから学ぶ方法を提供する。
これらの特徴は、科学的文献の分析と同様に、人間が熱心または繰り返しを見つける多くの活動に適用できる。
組織的文献レビュー(slr)の作成と作成には、戦略の立案、文献検索と分析の実施、発見の報告が必要となるため、かなりの時間と労力を要する。
研究対象の領域によっては、検索された論文の数は数百から数千になるため、関連する論文をフィルタリングしてキー情報を抽出することはコストがかかり、エラーが発生しやすいプロセスになる。
しかし、関連するタスクのいくつかは反復的であり、したがってAIによって自動化される。
本稿では,過去15年間に研究者が科学的文献を体系的に分析するためのai技術に関する調査を行う。
現在サポートされているタスク、適用されるアルゴリズムの種類、34の初等研究で提案されているツールについて説明する。
この調査はまた、フィールドの進化と、人間がますます自動化されたSLRプロセスで果たすことができる役割に関する歴史的見解を提供する。
関連論文リスト
- LLAssist: Simple Tools for Automating Literature Review Using Large Language Models [0.0]
LLAssistは学術研究における文献レビューの合理化を目的としたオープンソースツールである。
レビュープロセスの重要な側面を自動化するために、Large Language Models(LLM)とNatural Language Processing(NLP)技術を使用する。
論文 参考訳(メタデータ) (2024-07-19T02:48:54Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
本稿では,幅広い化学文献から高忠実度抽出が可能なエンドツーエンドAIエージェントフレームワークを提案する。
本フレームワークの有効性は,反応条件データの精度,リコール,F1スコアを用いて評価する。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - Artificial Intelligence for Literature Reviews: Opportunities and Challenges [0.0]
この写本は、システム文献レビューにおける人工知能の使用に関する包括的なレビューを提示する。
SLRは、あるトピックに関する以前の研究を評価し、統合する厳格で組織化された方法論である。
従来の23の機能と11のAI機能を組み合わせたフレームワークを用いて、主要なSLRツール21について検討する。
論文 参考訳(メタデータ) (2024-02-13T16:05:51Z) - Can Large Language Models Serve as Data Analysts? A Multi-Agent Assisted
Approach for Qualitative Data Analysis [6.592797748561459]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)における協調的な人間とロボットの相互作用を可能にした
定性的な研究において,新たな拡張性と精度の次元を導入し,SEにおけるデータ解釈手法を変革する可能性がある。
論文 参考訳(メタデータ) (2024-02-02T13:10:46Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Can AI Serve as a Substitute for Human Subjects in Software Engineering
Research? [24.39463126056733]
本稿では,人工知能(AI)の能力を活用したソフトウェア工学研究における定性データ収集手法を提案する。
定性的データの代替源としてAI生成合成テキストの可能性を探る。
観察研究とユーザ評価における人間の行動のエミュレートを目的とした新しい基礎モデルの開発について論じる。
論文 参考訳(メタデータ) (2023-11-18T14:05:52Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Application of Artificial Intelligence and Machine Learning in
Libraries: A Systematic Review [0.0]
本研究の目的は,図書館における人工知能と機械学習の適用を探求する実証研究の合成を提供することである。
データはWeb of Science, Scopus, LISA, LISTAデータベースから収集された。
LIS領域に関連するAIとML研究の現在の状況は、主に理論的な研究に焦点が当てられていることを示している。
論文 参考訳(メタデータ) (2021-12-06T07:33:09Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。