論文の概要: LLAssist: Simple Tools for Automating Literature Review Using Large Language Models
- arxiv url: http://arxiv.org/abs/2407.13993v2
- Date: Mon, 30 Sep 2024 13:03:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:59:08.779649
- Title: LLAssist: Simple Tools for Automating Literature Review Using Large Language Models
- Title(参考訳): LLAssist: 大規模言語モデルを用いた文献レビューの自動化ツール
- Authors: Christoforus Yoga Haryanto,
- Abstract要約: LLAssistは学術研究における文献レビューの合理化を目的としたオープンソースツールである。
レビュープロセスの重要な側面を自動化するために、Large Language Models(LLM)とNatural Language Processing(NLP)技術を使用する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces LLAssist, an open-source tool designed to streamline literature reviews in academic research. In an era of exponential growth in scientific publications, researchers face mounting challenges in efficiently processing vast volumes of literature. LLAssist addresses this issue by leveraging Large Language Models (LLMs) and Natural Language Processing (NLP) techniques to automate key aspects of the review process. Specifically, it extracts important information from research articles and evaluates their relevance to user-defined research questions. The goal of LLAssist is to significantly reduce the time and effort required for comprehensive literature reviews, allowing researchers to focus more on analyzing and synthesizing information rather than on initial screening tasks. By automating parts of the literature review workflow, LLAssist aims to help researchers manage the growing volume of academic publications more efficiently.
- Abstract(参考訳): 本稿では,学術研究における文献レビューの合理化を目的としたオープンソースツールであるLAssistを紹介する。
科学出版物の指数関数的な成長の時代、研究者は大量の文学を効率的に処理する上で困難に直面している。
LLAssistは、大規模な言語モデル(LLM)と自然言語処理(NLP)技術を活用して、レビュープロセスの重要な側面を自動化することでこの問題に対処する。
具体的には,研究論文から重要な情報を抽出し,ユーザ定義された研究課題との関連性を評価する。
LLAssistの目標は、包括的な文献レビューに必要な時間と労力を大幅に削減することであり、研究者は初期スクリーニングタスクよりも、情報を分析し、合成することに集中することができる。
LLAssistは、文献レビューのワークフローの一部を自動化することによって、学術出版物の増大量をより効率的に管理することを目指している。
関連論文リスト
- LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、大規模言語モデルによる研究アイデア作成エージェントである。
科学文献に基づいて繰り返し精製しながら、問題、方法、実験設計を生成する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
本稿では,研究者にパーソナライズされた効率的な調査支援を目的とした会話システムであるSurveyAgentを紹介する。
SurveyAgentは3つの重要なモジュールを統合している。文書を整理するための知識管理、関連する文献を発見するための勧告、より深いレベルでコンテンツを扱うためのクエリ回答だ。
本評価は,研究活動の合理化におけるSurveyAgentの有効性を実証し,研究者の科学文献との交流を促進する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-09T15:01:51Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Artificial Intelligence for Literature Reviews: Opportunities and
Challenges [0.0]
この写本は、システム文献レビューにおける人工知能の使用に関する包括的なレビューを提示する。
SLRは、あるトピックに関する以前の研究を評価し、統合する厳格で組織化された方法論である。
従来の23の機能と11のAI機能を組み合わせたフレームワークを用いて、主要なSLRツール21について検討する。
論文 参考訳(メタデータ) (2024-02-13T16:05:51Z) - Streamlining the Selection Phase of Systematic Literature Reviews (SLRs) Using AI-Enabled GPT-4 Assistant API [0.0]
本研究は,システム文献レビューにおいて,記事選択フェーズの効率を合理化するための,先駆的なAIベースのツールを紹介する。
このツールは、幅広い学術分野にわたる記事選択プロセスの均質化に成功している。
論文 参考訳(メタデータ) (2024-01-14T11:16:16Z) - Artificial intelligence to automate the systematic review of scientific
literature [0.0]
我々は過去15年間に提案されたAI技術について,研究者が科学的文献の体系的な分析を行うのを助けるために調査を行った。
現在サポートされているタスク、適用されるアルゴリズムの種類、34の初等研究で提案されているツールについて説明する。
論文 参考訳(メタデータ) (2024-01-13T19:12:49Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - AI Literature Review Suite [0.0]
総合的な文献レビューを提供するために、いくつかの機能を統合するAI Literature Review Suiteを紹介します。
このツールは、オープンアクセス科学、大規模言語モデル(LLM)、自然言語処理の力を活用して、PDFファイルの検索、ダウンロード、整理を可能にする。
このスイートには、組織、対話、クエリのための統合プログラムや、文献レビューの要約も備えている。
論文 参考訳(メタデータ) (2023-07-27T17:30:31Z) - Algorithmic Ghost in the Research Shell: Large Language Models and
Academic Knowledge Creation in Management Research [0.0]
本稿では,学術知識創造における大規模言語モデルの役割について考察する。
これには、書き込み、編集、レビュー、データセットの作成、キュレーションが含まれる。
論文 参考訳(メタデータ) (2023-03-10T14:25:29Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
引用論文と引用論文の参照リンクの引用グラフを使用する。
最先端技術に対するエンド・ツー・エンドの情報抽出の大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-03T03:00:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。