Clustering Molecular Energy Landscapes by Adaptive Network Embedding
- URL: http://arxiv.org/abs/2401.10972v1
- Date: Fri, 19 Jan 2024 17:12:07 GMT
- Title: Clustering Molecular Energy Landscapes by Adaptive Network Embedding
- Authors: Paula Mercurio and Di Liu
- Abstract summary: We present a data driven approach for clustering potential energy landscapes of molecular structures.
We also incorporate an entropy sensitive adaptive scheme for hierarchical sampling of the energy landscape.
We demonstrate the framework through Lennard-Jones clusters and a human DNA sequence.
- Score: 2.676713226382288
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to efficiently explore the chemical space of all possible small
molecules, a common approach is to compress the dimension of the system to
facilitate downstream machine learning tasks. Towards this end, we present a
data driven approach for clustering potential energy landscapes of molecular
structures by applying recently developed Network Embedding techniques, to
obtain latent variables defined through the embedding function. To scale up the
method, we also incorporate an entropy sensitive adaptive scheme for
hierarchical sampling of the energy landscape, based on Metadynamics and
Transition Path Theory. By taking into account the kinetic information implied
by a system's energy landscape, we are able to interpret dynamical node-node
relationships in reduced dimensions. We demonstrate the framework through
Lennard-Jones (LJ) clusters and a human DNA sequence.
Related papers
- Generalized Flow Matching for Transition Dynamics Modeling [14.76793118877456]
We propose a data-driven approach to warm-up the simulation by learning nonlinearities from local dynamics.
Specifically, we infer a potential energy function from local dynamics data to find plausible paths between two metastable states.
We validate the effectiveness of the proposed method to sample probable paths on both synthetic and real-world molecular systems.
arXiv Detail & Related papers (2024-10-19T15:03:39Z) - Neural Message Passing Induced by Energy-Constrained Diffusion [79.9193447649011]
We propose an energy-constrained diffusion model as a principled interpretable framework for understanding the mechanism of MPNNs.
We show that the new model can yield promising performance for cases where the data structures are observed (as a graph), partially observed or completely unobserved.
arXiv Detail & Related papers (2024-09-13T17:54:41Z) - A POD-TANN approach for the multiscale modeling of materials and macroelement derivation in geomechanics [0.0]
This paper introduces a novel approach that combines Proper Orthogonal Decomposition (POD) with Thermodynamics-based Artificial Neural Networks (TANN) to capture the macroscopic behavior of complex inelastic systems and derive macroelements in geomechanics.
The results indicate that the POD-TANN approach not only offers accuracy reproducing in the studied responses, but also reduces computational costs, making it a practical tool for the multiscale modeling of heterogeneous inelastic geomechanical systems.
arXiv Detail & Related papers (2024-08-13T19:08:56Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Data-Free Learning of Reduced-Order Kinematics [54.85157881323157]
We produce a low-dimensional map whose image parameterizes a diverse yet low-energy submanifold of configurations.
We represent subspaces as neural networks that map a low-dimensional latent vector to the full configuration space.
This formulation is effective across a very general range of physical systems.
arXiv Detail & Related papers (2023-05-05T20:53:36Z) - Multitask machine learning of collective variables for enhanced sampling
of rare events [9.632096602077919]
A data-driven machine learning algorithm is devised to learn collective variables with a neural network.
The resulting latent space is shown to be an effective low-dimensional representation.
This approach is successfully applied to model systems including a 5D M"uller Brown model, a 5D three-well model, and alanine dipeptide in vacuum.
arXiv Detail & Related papers (2020-12-07T18:40:18Z) - GCN for HIN via Implicit Utilization of Attention and Meta-paths [104.24467864133942]
Heterogeneous information network (HIN) embedding aims to map the structure and semantic information in a HIN to distributed representations.
We propose a novel neural network method via implicitly utilizing attention and meta-paths.
We first use the multi-layer graph convolutional network (GCN) framework, which performs a discriminative aggregation at each layer.
We then give an effective relaxation and improvement via introducing a new propagation operation which can be separated from aggregation.
arXiv Detail & Related papers (2020-07-06T11:09:40Z) - Principles underlying efficient exciton transport unveiled by
information-geometric analysis [0.1473281171535445]
We show that open quantum system models of Frenkel exciton transport belong to a class of mathematical models known as'sloppy'
We find that fine tuning the excitation energies in the network is generally far more important than optimizing the network geometry.
arXiv Detail & Related papers (2020-04-30T14:18:17Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences.
FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions.
One strategy to mitigate this problem, called Targeted Free Energy Perturbation, uses a high-dimensional mapping in configuration space to increase overlap.
arXiv Detail & Related papers (2020-02-12T11:10:00Z) - Geometric deep learning for computational mechanics Part I: Anisotropic
Hyperelasticity [1.8606313462183062]
This paper is the first attempt to use geometric deep learning and Sobolev training incorporate non-Euclidean microstructural data such that anisotropic hyperstructural material machine learning models can be trained in the finite deformation range.
arXiv Detail & Related papers (2020-01-08T02:07:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.