A POD-TANN approach for the multiscale modeling of materials and macroelement derivation in geomechanics
- URL: http://arxiv.org/abs/2408.07165v3
- Date: Tue, 1 Oct 2024 07:52:54 GMT
- Title: A POD-TANN approach for the multiscale modeling of materials and macroelement derivation in geomechanics
- Authors: Giovanni Piunno, Ioannis Stefanou, Cristina Jommi,
- Abstract summary: This paper introduces a novel approach that combines Proper Orthogonal Decomposition (POD) with Thermodynamics-based Artificial Neural Networks (TANN) to capture the macroscopic behavior of complex inelastic systems and derive macroelements in geomechanics.
The results indicate that the POD-TANN approach not only offers accuracy reproducing in the studied responses, but also reduces computational costs, making it a practical tool for the multiscale modeling of heterogeneous inelastic geomechanical systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel approach that combines Proper Orthogonal Decomposition (POD) with Thermodynamics-based Artificial Neural Networks (TANN) to capture the macroscopic behavior of complex inelastic systems and derive macroelements in geomechanics. The methodology leverages POD to extract macroscopic Internal State Variables from microscopic state information, thereby enriching the macroscopic state description used to train an energy potential network within the TANN framework. The thermodynamic consistency provided by TANN, combined with the hierarchical nature of POD, allows to reproduce complex, non-linear inelastic material behaviors as well as macroscopic geomechanical systems responses. The approach is validated through applications of increasing complexity, demonstrating its capability to reproduce high-fidelity simulation data. The applications proposed include the homogenization of continuous inelastic representative unit cells and the derivation of a macroelement for a geotechnical system involving a monopile in a clay layer subjected to horizontal loading. Eventually, the projection operators directly obtained via POD, are exploit to easily reconstruct the microscopic fields. The results indicate that the POD-TANN approach not only offers accuracy in reproducing the studied constitutive responses, but also reduces computational costs, making it a practical tool for the multiscale modeling of heterogeneous inelastic geomechanical systems.
Related papers
- Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials [1.1016723046079784]
We report the use of continuous and differentiable alchemical degrees of freedom in atomistic materials simulations.
The proposed method introduces alchemical atoms with corresponding weights into the input graph, alongside modifications to the message-passing and readout mechanisms of MLIPs.
The end-to-end differentiability of MLIPs enables efficient calculation of the gradient of energy with respect to the compositional weights.
arXiv Detail & Related papers (2024-04-16T17:24:22Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - GANs and Closures: Micro-Macro Consistency in Multiscale Modeling [0.0]
We present an approach that couples physics-based simulations and biasing methods for sampling conditional distributions with Machine Learning-based conditional generative adversarial networks.
We show that this framework can improve multiscale SDE dynamical systems sampling, and even shows promise for systems of increasing complexity.
arXiv Detail & Related papers (2022-08-23T03:45:39Z) - PAC Reinforcement Learning for Predictive State Representations [60.00237613646686]
We study online Reinforcement Learning (RL) in partially observable dynamical systems.
We focus on the Predictive State Representations (PSRs) model, which is an expressive model that captures other well-known models.
We develop a novel model-based algorithm for PSRs that can learn a near optimal policy in sample complexity scalingly.
arXiv Detail & Related papers (2022-07-12T17:57:17Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Thermodynamics-based Artificial Neural Networks (TANN) for multiscale
modeling of materials with inelastic microstructure [0.0]
Multiscale, homogenization approaches are often used for performing reliable, accurate predictions of the macroscopic mechanical behavior of inelastic materials.
Data-driven approaches based on deep learning have risen as a promising alternative to replace ad-hoc laws and speed-up numerical methods.
Here, we propose Thermodynamics-based Artificial Neural Networks (TANN) for the modeling of mechanical materials with inelastic and complex microstructure.
arXiv Detail & Related papers (2021-08-30T11:50:38Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Cell division in deep material networks applied to multiscale strain
localization modeling [0.0]
deep material networks (DMN) are a machine learning model with embedded mechanics in the building blocks.
A new cell division scheme is proposed to track the scale transition through the network, and its consistency is ensured by the physics of fitting parameters.
New crack surfaces in the cell are modeled by enriching cohesive layers, and failure algorithms are developed for crack initiation and evolution.
arXiv Detail & Related papers (2021-01-18T18:24:51Z) - Learning Composable Energy Surrogates for PDE Order Reduction [28.93892833892805]
We use parametric modular structure to learn component-level surrogates, enabling cheaper high-fidelity simulation.
We use a neural network to model the stored potential energy in a component given boundary conditions.
Composable energy surrogates permit simulation in the reduced basis of component boundaries.
arXiv Detail & Related papers (2020-05-13T19:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.