論文の概要: CARE: Ensemble Adversarial Robustness Evaluation Against Adaptive
Attackers for Security Applications
- arxiv url: http://arxiv.org/abs/2401.11126v1
- Date: Sat, 20 Jan 2024 05:37:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 17:58:52.299533
- Title: CARE: Ensemble Adversarial Robustness Evaluation Against Adaptive
Attackers for Security Applications
- Title(参考訳): CARE: セキュリティアプリケーションに対するアダプティブアタッカーに対する対向ロバストネスの評価をアンサンブルする
- Authors: Hangsheng Zhang, Jiqiang Liu, Jinsong Dong
- Abstract要約: アンサンブルディフェンスは、モデル性能とロバスト性を高めるために、様々なセキュリティ関連のアプリケーションで広く利用されている。
サイバーセキュリティ分野におけるアンサンブル攻撃と防衛の総合的な評価のためのプラットフォームは存在しない。
- 参考スコア(独自算出の注目度): 14.25922051336361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensemble defenses, are widely employed in various security-related
applications to enhance model performance and robustness. The widespread
adoption of these techniques also raises many questions: Are general ensembles
defenses guaranteed to be more robust than individuals? Will stronger adaptive
attacks defeat existing ensemble defense strategies as the cybersecurity arms
race progresses? Can ensemble defenses achieve adversarial robustness to
different types of attacks simultaneously and resist the continually adjusted
adaptive attacks? Unfortunately, these critical questions remain unresolved as
there are no platforms for comprehensive evaluation of ensemble adversarial
attacks and defenses in the cybersecurity domain. In this paper, we propose a
general Cybersecurity Adversarial Robustness Evaluation (CARE) platform aiming
to bridge this gap.
- Abstract(参考訳): アンサンブルディフェンスは、モデル性能と堅牢性を高めるために様々なセキュリティ関連のアプリケーションで広く利用されている。
一般的なアンサンブルの防御は個人よりも堅牢であることが保証されていますか?
サイバーセキュリティの武器競争が進むにつれ、より強力な適応攻撃が既存のアンサンブル防衛戦略を破るのか?
アンサンブル防御は、異なるタイプの攻撃に対して同時に敵の堅牢性を達成し、常に調整された適応攻撃に抵抗することができるか?
残念ながら、これらの重要な問題は、サイバーセキュリティ領域におけるアンサンブル攻撃と防衛の総合的な評価のためのプラットフォームが存在しないため未解決のままである。
本稿では,このギャップを埋めるための一般サイバーセキュリティ対策ロバストネス評価(CARE)プラットフォームを提案する。
関連論文リスト
- SPIN: Self-Supervised Prompt INjection [16.253558670549697]
敵の攻撃と脱獄攻撃は 安全アライメントを回避し モデルに有害な反応をもたらすよう提案されている
自己監督型プロンプト注入(SPIN)を導入し,LSMに対するこれらの様々な攻撃を検出し,逆転させることができる。
本システムでは,攻撃成功率を87.9%まで削減し,ユーザ要求の良質な性能を維持しながら,攻撃成功率を最大で87.9%削減する。
論文 参考訳(メタデータ) (2024-10-17T05:40:54Z) - Position: Towards Resilience Against Adversarial Examples [42.09231029292568]
我々は、敵の弾力性の定義と、敵の弾力性のある防御を設計する方法について概観する。
次に, 対向弾性のサブプロブレムを導入し, 連続適応ロバストネス(continuousal adapt robustness)と呼ぶ。
本研究では, 連続適応ロバストネスと, マルチアタックロバストネスと予期せぬアタックロバストネスの関連性を実証する。
論文 参考訳(メタデータ) (2024-05-02T14:58:44Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Adversarial Markov Games: On Adaptive Decision-Based Attacks and Defenses [21.759075171536388]
攻撃だけでなく、防御も、相互作用を通じてお互いから学び合うことによって、どのような恩恵を受けるかを示します。
我々は、システムがどのように反応するかを制御するアクティブディフェンスが、意思決定ベースの攻撃に直面した際のモデルの強化に必須の補完であることを示した。
実世界で展開されるMLベースのシステムの堅牢性を確保するための効果的な戦略を策定する。
論文 参考訳(メタデータ) (2023-12-20T21:24:52Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
最近の研究は、テキストのモデレーションが防御をバイパスするジェイルブレイクのプロンプトを生み出すことを示している。
検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。
テキストに対する既存の離散化の弱点と比較的高いコストの最適化が組み合わさって、標準適応攻撃をより困難にしていることがわかった。
論文 参考訳(メタデータ) (2023-09-01T17:59:44Z) - Saliency Diversified Deep Ensemble for Robustness to Adversaries [1.9659095632676094]
本研究は,深層アンサンブルのための新しい多様性促進学習手法を提案する。
この考え方は、アンサンブルのメンバーが一度にすべてのアンサンブルメンバーを標的にしないよう、サリエンシマップの多様性(SMD)を促進することである。
アンサンブル構成員間の移動性が低下し,最先端のアンサンブル防御よりも性能が向上したことを実証的に示す。
論文 参考訳(メタデータ) (2021-12-07T10:18:43Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Adversarial Attack and Defense in Deep Ranking [100.17641539999055]
本稿では,敵対的摂動によって選抜された候補者のランクを引き上げたり下げたりできる,ディープランキングシステムに対する2つの攻撃を提案する。
逆に、全ての攻撃に対するランキングモデルロバスト性を改善するために、反崩壊三重項防御法が提案されている。
MNIST, Fashion-MNIST, CUB200-2011, CARS196およびStanford Online Productsデータセットを用いて, 敵のランク付け攻撃と防御を評価した。
論文 参考訳(メタデータ) (2021-06-07T13:41:45Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
我々は、より適切な勾配方向を見つけ、攻撃効果を高め、より効率的な対人訓練をもたらす標準損失に緩和項を導入する。
本稿では, クリーン画像の関数マッピングを用いて, 敵生成を誘導するGAMA ( Guided Adversarial Margin Attack) を提案する。
また,一段防衛における最先端性能を実現するためのGAT ( Guided Adversarial Training) を提案する。
論文 参考訳(メタデータ) (2020-11-30T16:39:39Z) - Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks [65.20660287833537]
本稿では,最適段差の大きさと目的関数の問題による障害を克服するPGD攻撃の2つの拡張を提案する。
そして、我々の新しい攻撃と2つの補完的な既存の攻撃を組み合わせることで、パラメータフリーで、計算に手頃な価格で、ユーザに依存しない攻撃のアンサンブルを形成し、敵の堅牢性をテストする。
論文 参考訳(メタデータ) (2020-03-03T18:15:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。