論文の概要: PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation
- arxiv url: http://arxiv.org/abs/2401.11316v1
- Date: Sat, 20 Jan 2024 20:25:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 17:08:19.035003
- Title: PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation
- Title(参考訳): PRILoRA: 低ランク適応の削減とランク向上
- Authors: Nadav Benedek, Lior Wolf
- Abstract要約: 我々はPRILoRAを導入し、各層ごとに異なるランクを線形に割り当て、トレーニングプロセスを通してプルーニングを行う。
8つのGLUEベンチマークで広範な実験を行い,PRILoRAの有効性を検証する。
- 参考スコア(独自算出の注目度): 65.268245109828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the proliferation of large pre-trained language models (PLMs),
fine-tuning all model parameters becomes increasingly inefficient, particularly
when dealing with numerous downstream tasks that entail substantial training
and storage costs. Several approaches aimed at achieving parameter-efficient
fine-tuning (PEFT) have been proposed. Among them, Low-Rank Adaptation (LoRA)
stands out as an archetypal method, incorporating trainable rank decomposition
matrices into each target module. Nevertheless, LoRA does not consider the
varying importance of each layer. To address these challenges, we introduce
PRILoRA, which linearly allocates a different rank for each layer, in an
increasing manner, and performs pruning throughout the training process,
considering both the temporary magnitude of weights and the accumulated
statistics of the input to any given layer. We validate the effectiveness of
PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new
state of the art.
- Abstract(参考訳): 大規模事前学習言語モデル(PLM)の普及に伴い、特に相当なトレーニングと記憶コストを必要とする下流タスクを扱う場合、モデルパラメータの微調整は効率が悪くなる。
パラメータ効率のよい微調整(PEFT)を実現するためのいくつかの手法が提案されている。
その中でもLoRA(Lo-Rank Adaptation)は、トレーニング可能な階数分解行列を各ターゲットモジュールに組み込んだアーキティパル手法として際立っている。
それでもLoRAは各レイヤの重要性を考慮していない。
これらの課題に対処するために,各層ごとに異なるランクを線形に割り当てるpriloraを導入し,各層への一時的な重み付けと入力の累積統計量の両方を考慮して,トレーニングプロセス全体にわたってプルーニングを行う。
我々は,8つの接着ベンチマークを用いた広範囲な実験により,priloraの有効性を検証する。
関連論文リスト
- Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning [105.11844150736536]
低ランク適応は、大規模言語モデルのためのパラメータ効率の良い微調整法として人気がある。
トレーニング可能なパラメータ数を同じ数に保ちながら、高階更新を実現するために2乗行列を用いるMoRAと呼ばれる新しい手法を提案する。
本手法はメモリ集約型タスクではLoRAより優れ,他のタスクでは同等のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-20T15:48:32Z) - ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models [8.251547772610301]
低ランク適応 (LoRA) の方法論を、低ランク適応 (AloRA) と呼ぶ革新的なアプローチに拡張する。
まず,各ランクの重要度を効果的に推定できる新しい手法であるAB-LoRAを提案する。
第2に、AB-LoRAによって導かれ、我々は徐々にLoRAのランクに多く負の影響を及ぼし、高いランクを必要とする重要なトランスフォーマーモジュールにローラの予算を割り当てる。
論文 参考訳(メタデータ) (2024-03-24T15:09:55Z) - BiLoRA: A Bi-level Optimization Framework for Overfitting-Resilient Low-Rank Adaptation of Large Pre-trained Models [34.1111413429869]
BiLoRA はバイレベル最適化 (BLO) に基づく過度に適合する微調整手法である
自然言語理解と生成タスクをカバーする10のデータセットでテストしました。
論文 参考訳(メタデータ) (2024-03-19T14:11:20Z) - AutoLoRA: Automatically Tuning Matrix Ranks in Low-Rank Adaptation Based on Meta Learning [31.975038164401404]
低ランク適応 (LoRA) 低ランクインクリメンタル更新行列は、凍結事前訓練された重量の上に置かれる。
本稿では,各LoRA層の最適ランクを自動的に識別するフレームワークであるAutoLoRAを紹介する。
自然言語理解,生成,シーケンスラベリングに関する実験により,AutoLoRAの有効性が示された。
論文 参考訳(メタデータ) (2024-03-14T05:29:35Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
低ランク適応 (LoRA) は、適応過程が本質的に低次元であるという考えに基づいている。
我々は、より高階を維持しながらトレーニング可能なパラメータを少なくするミニアンサンブルな低ランクアダプタMELoRAを提案する。
実験結果から, 自然言語理解タスクの8倍のトレーニングパラメータ, 続くタスクの36倍のトレーニングパラメータが得られた。
論文 参考訳(メタデータ) (2024-02-27T07:14:12Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z) - IncreLoRA: Incremental Parameter Allocation Method for
Parameter-Efficient Fine-tuning [15.964205804768163]
IncreLoRAは、トレーニング中にトレーニング可能なパラメータを適応的に追加するインクリメンタルパラメータ割り当て手法である。
我々は,IncreLoRAの有効性を示すため,GLUEの広範な実験を行った。
論文 参考訳(メタデータ) (2023-08-23T10:08:10Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
下流タスクで訓練済みの大規模言語モデルを微調整することは、NLPにおいて重要なパラダイムとなっている。
重み行列のパラメータ予算をその重要度に応じて適応的に割り当てるAdaLoRAを提案する。
我々は,AdaLoRAの有効性を検証するために,自然言語処理,質問応答,自然言語生成に関する事前学習モデルを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-03-18T22:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。