論文の概要: Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs
- arxiv url: http://arxiv.org/abs/2410.19694v1
- Date: Fri, 25 Oct 2024 17:07:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:38:12.602822
- Title: Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs
- Title(参考訳): LLMの高精細化のための超グラディエントブーストランク-1適応
- Authors: Yifei Zhang, Hao Zhu, Aiwei Liu, Han Yu, Piotr Koniusz, Irwin King,
- Abstract要約: 微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
- 参考スコア(独自算出の注目度): 75.11449420928139
- License:
- Abstract: Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks. However, the enormous size of LLMs poses significant challenges in terms of computational complexity and resource requirements. Low-Rank Adaptation (LoRA) has emerged as a promising solution. However, there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum. In this work, we propose eXtreme Gradient Boosting LoRA (XGBLoRA), a novel framework that bridges this gap by leveraging the power of ensemble learning. Inspired by gradient boosting, XGBLoRA iteratively learns and merges a sequence of LoRA adaptations to refine model predictions. It achieves better performance than the standard LoRA, while enjoying the computational efficiency of rank-1 adaptations. We provide theoretical analysis to show the convergence and optimality of our approach, and conduct extensive experiments on a range of natural language processing tasks. The results demonstrate that XGBLoRA consistently outperforms standard LoRA and achieves performance comparable to full fine-tuning with significantly fewer trainable parameters. This work advances parameter-efficient fine-tuning for LLMs, and offers a promising solution for adapting LLMs to downstream tasks while optimizing performance and efficiency.
- Abstract(参考訳): 微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
しかし、LLMの膨大なサイズは、計算複雑性とリソース要求の観点から大きな課題を生じさせる。
Low-Rank Adaptation (LoRA) が有望なソリューションとして登場した。
しかし、低ランク適応の実践的性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRA (XGBLoRA)を提案する。
勾配の上昇にインスパイアされたXGBLoRAは、モデル予測を洗練させるために、反復的にLoRA適応を学習し、マージする。
ランク1適応の計算効率を楽しみながら、標準のLoRAよりも優れた性能を実現している。
本研究では,提案手法の収束性と最適性を示す理論的解析を行い,自然言語処理タスクの広範囲にわたる実験を行った。
その結果、XGBLoRAは標準のLoRAよりも一貫して優れており、トレーニング可能なパラメータが大幅に少ない完全な微調整に匹敵する性能を実現している。
この研究は、LLMのパラメータ効率の微調整を推進し、性能と効率を最適化しながら、下流タスクにLLMを適用するための有望なソリューションを提供する。
関連論文リスト
- LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - BA-LoRA: Bias-Alleviating Low-Rank Adaptation to Mitigate Catastrophic Inheritance in Large Language Models [13.660511750245245]
この研究は、バイアス継承に対抗するために設計された新しいPEFT法であるBias-Alleviating Low-Rank Adaptation (BA-LoRA)を導入している。
BA-LoRAは、(1)整合正則化器、(2)多様性正則化器、(3)特異値分解正則化器の3つの異なる正則化項を含む。
その結果、BA-LoRAはLoRAとその最先端の変種よりも優れていた。
論文 参考訳(メタデータ) (2024-08-08T16:13:26Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - RankAdaptor: Hierarchical Dynamic Low-Rank Adaptation for Structural Pruned LLMs [3.3424221693424014]
本稿では,階層的動的階数スケジューリングを併用した効率的な微調整手法であるRandAdaptorを紹介する。
RankAdaptorは、異なるプルーニング設定に対して構造的なプルーニングで標準のLoRAを一貫して上回っている。
トレーニング可能なパラメータを増やすことなく、RandAdaptorはプルーンドモデルと元のモデルのリカバリの間の精度パフォーマンスギャップをさらに小さくする。
論文 参考訳(メタデータ) (2024-06-22T04:52:58Z) - OLoRA: Orthonormal Low-Rank Adaptation of Large Language Models [0.0]
Low-Rank Adaptation (LoRA)はこれらの問題を緩和するための有望な方法として登場した。
OLoRAはLLMトレーニングの収束を著しく加速する。
OLoRAは、様々な言語モデリングタスクで標準のLoRAよりもパフォーマンスが向上している。
論文 参考訳(メタデータ) (2024-06-03T20:37:27Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
我々はPRILoRAを導入し、各層ごとに異なるランクを線形に割り当て、トレーニングプロセスを通してプルーニングを行う。
8つのGLUEベンチマークで広範な実験を行い,PRILoRAの有効性を検証する。
論文 参考訳(メタデータ) (2024-01-20T20:25:17Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z) - One-for-All: Generalized LoRA for Parameter-Efficient Fine-tuning [34.109808214968176]
Generalized LoRA (GLoRA) は、汎用パラメータ効率の微調整タスクのための先進的なアプローチである。
一般化されたプロンプトモジュールを使用して、事前訓練されたモデルの重量を最適化し、中間活性化を調整する。
GLoRAは、強力な転送学習、少数ショット学習、ドメイン一般化能力を示す。
論文 参考訳(メタデータ) (2023-06-13T17:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。